This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361376 #22 Jun 11 2023 12:28:54 %S A361376 0,1,2,3,4,5,6,8,7,9,10,16,11,17,12,13,18,19,32,14,33,20,15,21,34,35, %T A361376 22,24,64,23,36,25,65,37,26,66,38,27,67,40,128,39,41,28,68,129,29,69, %U A361376 42,130,48,43,30,70,72,131,49,31,71,44,73,256,132,45,50,257,133,74,51,46,80,75,258,134,136 %N A361376 Rewrite A129912(n), a product of distinct primorials P(i) = A002110(i) instead as a sum of powers 2^(i-1). %C A361376 Permutation of nonnegative numbers. %H A361376 Michael De Vlieger, <a href="/A361376/b361376.txt">Table of n, a(n) for n = 1..15303</a> (a(15303) = 2^29.) %H A361376 Michael De Vlieger, <a href="/A361376/a361376.png">Log log scatterplot of a(n)</a>, n = 1..10^6. %H A361376 Michael De Vlieger, <a href="/A361376/a361376_1.png">Plot terms S(n) = A272011(a(n)) at (x,y) = (n,S(n,k))</a> for n = 1..2^11. %F A361376 Let S(n) be the set of indices of primorials P(i), reverse sorted, such that A129912(n) = Product_{k=1..m} S(n,k), where m = | S(n) |. Then a(n) = Sum_{k=1..m} 2^(S(n,k)-1). %e A361376 a(1) = 0 by convention. %e A361376 a(8) = 8 comes before a(9) = 7, since we interpret 8 = 2^3 instead as P(4) = 210, while for a(9), 7 = 2^2 + 2^1 + 2^0 becomes P(3)*P(2)*P(1) = 30*6*2 = 360. Because 210 < 360, 8 appears before 7 in this sequence. %e A361376 Table relating a(n), n=1..19 with the set S(n) of indices of distinct primorial factors of A129912(n): %e A361376 n A129912(n) S(n) a(n) A272011(a(n)) %e A361376 ----------------------------------------- %e A361376 1 1 0 %e A361376 2 2 1 1 0 %e A361376 3 6 2 2 1 %e A361376 4 12 2,1 3 1,0 %e A361376 5 30 3 4 2 %e A361376 6 60 3,1 5 2,0 %e A361376 7 180 3,2 6 2,1 %e A361376 8 210 4 8 3 %e A361376 9 360 3,2,1 7 2,1,0 %e A361376 10 420 4,1 9 3,0 %e A361376 11 1260 4,2 10 3,1 %e A361376 12 2310 5 16 4 %e A361376 13 2520 4,2,1 11 3,1,0 %e A361376 14 4620 5,1 17 4,0 %e A361376 15 6300 4,3 12 3,2 %e A361376 16 12600 4,3,1 13 3,2,0 %e A361376 17 13860 5,2 18 4,1 %e A361376 18 27720 5,2,1 19 4,1,0 %e A361376 19 30030 6 32 5 %e A361376 ... %t A361376 a6939[n_] := Product[Prime[n + 1 - i]^i, {i, n}]; %t A361376 g[m_] := Block[{f, j = 1}, %t A361376 f[n_, i_, e_] := %t A361376 If[n < m, Block[{p = Prime[i + 1]}, If[e == 1, Sow@ n]; %t A361376 f[n p^e, i + 1, e]; %t A361376 If[e > 1, f[n p^(e - 1), i + 1, e - 1]]]]; %t A361376 Sort@ Reap[While[a6939[j] < m, f[2^j, 1, j]; j++]][[-1, 1]] ]; %t A361376 Map[Total@ %t A361376 Map[2^(# - 1) &, %t A361376 Table[LengthWhile[#1, # >= j &], {j, #2}] & @@ {#, Max[#]} ] &[ %t A361376 FactorInteger[#][[All, -1]]] &, g[2^31]] (* _Michael De Vlieger_, Jun 08 2023, after _Giovanni Resta_ at A129929 *) %Y A361376 Cf. A002110, A129912, A272011, A283477. %K A361376 nonn %O A361376 1,3 %A A361376 _Michael De Vlieger_, Jun 08 2023