A361378 Number of musical scales in n tone equal temperament respecting the property that alternate notes are 3 or 4 semitones apart.
0, 1, 2, 3, 3, 3, 8, 8, 12, 16, 25, 33, 45, 66, 91, 128, 177, 252, 351, 491, 689, 966, 1354, 1894, 2658, 3723, 5217, 7309, 10244, 14355, 20112, 28185, 39494, 55343, 77547, 108667, 152272, 213372, 298992, 418968, 587089, 822665, 1152777, 1615350
Offset: 1
Examples
For n=4 there are four notes, call them 0, 1, 2, and 3. The scales are 01, 02, and 03 and so a(4)=3.
Links
- Martin Epstein, mastodon.xyz thread, Feb 23 2023.
- Donovan Young, The number of scales with the natural thirds property.
- Index entries for linear recurrences with constant coefficients, signature (0,1,1,1,0,-1).
Programs
-
Mathematica
LinearRecurrence[{0,1,1,1,0,-1},{0,1,2,3,3,3},100]
Formula
a(n) = a(n-2) + a(n-3) + a(n-4) - a(n-6).
G.f.: x^2*(1+2*x+2*x^2-3*x^4)/(1-x^2-x^3-x^4+x^6).
Comments