cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361381 In continued fraction convergents of sqrt(d), where d=A005117(n) (squarefree numbers), the position of a/b where abs(a^2 - d*b^2) = 1 or 4.

Original entry on oeis.org

2, 4, 1, 2, 1, 4, 2, 1, 6, 2, 6, 4, 1, 1, 2, 8, 4, 4, 2, 1, 2, 2, 3, 2, 10, 12, 4, 2, 1, 4, 6, 7, 6, 3, 4, 1, 2, 10, 2, 6, 8, 7, 5, 2, 4, 4, 1, 2, 1, 10, 2, 5, 8, 4, 16, 4, 11, 1, 2, 12, 2, 9, 6, 5, 2, 6, 9, 6, 10, 10, 4, 1, 2, 12, 10, 3, 6, 4, 14, 9, 4, 18, 4, 4, 2, 1, 2, 3, 20, 10, 4, 5, 8, 10, 10, 18, 2, 22
Offset: 5

Views

Author

Ed Pegg Jr, Mar 09 2023

Keywords

Comments

The golden ratio is the fundamental unit for sqrt(5), but 1/1 isn't a convergent, so this sequence starts with squarefree number A005117(5)=6.

Examples

			A005117(13)=19. 170^2 - 19*39^2 = 1. The 6th convergent of sqrt(19) is 170/39.
A005117(14)=21. 5^2   - 21*1^2 =  4. The 2nd convergent of sqrt(21) is 5/1.
A005117(15)=22. 197^2 - 22*42^2 = 1. The 6th convergent of sqrt(22) is 197/42.
A005117(16)=23. 24^2  - 23*5^2 =  1. The 4th convergent of sqrt(23) is 24/5.
Corresponding fundamental units are 170+39*sqrt(19), 5+sqrt(21), 197+42*sqrt(22) and 24+5*sqrt(23).
		

Crossrefs

Programs

  • Maple
    f:= proc(x) local CF, k,v,w;
      uses NumberTheory;
      CF:= ContinuedFraction(sqrt(x));
      for k from 0 do
        v:= Convergent(CF,k);
        w:= abs(numer(v)^2 - x*denom(v)^2);
        if w = 1 or w = 4 then return k+1 fi;
      od
    end proc:
    count:= 0: R:= NULL:
    for i from 6 while count < 100 do if NumberTheory:-IsSquareFree(i) then R:= R, f(i); count:= count+1 fi
    od:
    R; # Robert Israel, Mar 12 2023
  • Mathematica
    (* store A005117 and A107997 first *) Flatten[Table[sqr = Sqrt[A005117[[n]]];
    fun = RootReduce[NumberFieldFundamentalUnits[Sqrt[A005117[[n]]]]][[1]];
    forcon = If[MemberQ[A107997, A005117[[n]]], RootReduce[2 fun], fun];
    converge = Convergents[ContinuedFraction[N[sqr, 140]]];
    Flatten[Position[converge, Abs[forcon[[1]]/(forcon[[2]]/ sqr)]]], {n, 4, 101}]]