This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361386 #9 Mar 10 2023 10:45:38 %S A361386 1,3,5,6,7,9,11,12,13,14,15,17,19,21,22,23,25,27,28,29,30,31,33,35,37, %T A361386 38,39,41,42,43,44,45,46,47,48,49,51,53,54,55,56,57,59,60,61,62,63,65, %U A361386 66,67,69,70,71,73,75,76,77,78,79,81,83,84,85,86,87,89,91 %N A361386 Infinitary arithmetic numbers: numbers for which the arithmetic mean of the infinitary divisors is an integer. %C A361386 Number k such that A037445(k) divides A049417(k). %C A361386 Subsequence of the unitary arithmetic numbers (A103826). %H A361386 Amiram Eldar, <a href="/A361386/b361386.txt">Table of n, a(n) for n = 1..10000</a> %F A361386 6 is a term since the arithmetic mean of its infinitary divisors, {1, 2, 3, 6}, is 3 which is an integer. %t A361386 f[p_, e_] := Module[{b = IntegerDigits[e, 2], m}, m = Length[b]; Product[If[b[[j]] > 0, (1 + p^(2^(m - j)))/2, 1], {j, 1, m}]]; q[1] = True; q[n_] := IntegerQ[Times @@ f @@@ FactorInteger[n]]; Select[Range[100], q] %o A361386 (PARI) is(n) = {my(f = factor(n), b); denominator(prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], (f[i, 1]^(2^(#b-k))+1)/2, 1)))) == 1; } %Y A361386 Cf. A037445, A049417, A077609. %Y A361386 Similar sequences: A003601, A103826. %K A361386 nonn %O A361386 1,2 %A A361386 _Amiram Eldar_, Mar 10 2023