This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361391 #11 Mar 16 2023 12:23:44 %S A361391 1,0,0,1,0,2,0,4,2,4,5,11,0,17,15,13,15,37,18,53,24,48,78,103,23,111, %T A361391 152,143,123,255,110,339,238,372,495,377,243,759,845,873,414,1259,842, %U A361391 1609,1383,1225,2281,2589,1285,2827,2518,3904,3836,5119,3715,4630 %N A361391 Number of strict integer partitions of n with non-integer mean. %C A361391 Are 1, 2, 4, 6, 12 the only zeros? %e A361391 The a(3) = 1 through a(11) = 11 partitions: %e A361391 {2,1} . {3,2} . {4,3} {4,3,1} {5,4} {5,3,2} {6,5} %e A361391 {4,1} {5,2} {5,2,1} {6,3} {5,4,1} {7,4} %e A361391 {6,1} {7,2} {6,3,1} {8,3} %e A361391 {4,2,1} {8,1} {7,2,1} {9,2} %e A361391 {4,3,2,1} {10,1} %e A361391 {5,4,2} %e A361391 {6,3,2} %e A361391 {6,4,1} %e A361391 {7,3,1} %e A361391 {8,2,1} %e A361391 {5,3,2,1} %p A361391 a:= proc(m) option remember; local b; b:= %p A361391 proc(n, i, t) option remember; `if`(i*(i+1)/2<n, %p A361391 0, `if`(n=0, signum(irem(m, t)), %p A361391 b(n, i-1, t)+b(n-i, min(n-i, i-1), t+1))) %p A361391 end: `if`(m=0, 1, b(m$2, 0)) %p A361391 end: %p A361391 seq(a(n), n=0..55); # _Alois P. Heinz_, Mar 16 2023 %t A361391 Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&!IntegerQ[Mean[#]]&]],{n,0,30}] %Y A361391 The strict complement is counted by A102627. %Y A361391 The non-strict version is ranked by A348551, complement A316413. %Y A361391 The non-strict version is counted by A349156, complement A067538. %Y A361391 For median instead of mean we have A360952, complement A359907. %Y A361391 A000041 counts partitions, strict A000009. %Y A361391 A008284/A058398/A327482 count partitions by mean. %Y A361391 A307683 counts partitions with non-integer median, ranks A359912. %Y A361391 A325347 counts partitions with integer median, ranks A359908. %Y A361391 A326567/A326568 give the mean of prime indices, conjugate A326839/A326840. %Y A361391 A327472 counts partitions not containing their mean, complement of A237984. %Y A361391 A327475 counts subsets with integer mean. %Y A361391 Cf. A051293, A082550, A143773, A175397, A175761, A240219, A240850, A326027, A326641, A326849, A359897. %K A361391 nonn %O A361391 0,6 %A A361391 _Gus Wiseman_, Mar 11 2023 %E A361391 a(31)-a(55) from _Alois P. Heinz_, Mar 16 2023