This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361394 #10 Mar 19 2023 18:09:06 %S A361394 1,1,2,2,4,6,8,11,15,20,30,38,49,65,83,108,139,178,224,286,358,437, %T A361394 550,684,837,1037,1269,1553,1889,2295,2770,3359,4035,4843,5808,6951, %U A361394 8312,9902,11752,13958,16531,19541,23037,27162,31911,37488,43950,51463,60127,70229 %N A361394 Number of integer partitions of n where 2*(number of distinct parts) >= (number of parts). %H A361394 Alois P. Heinz, <a href="/A361394/b361394.txt">Table of n, a(n) for n = 0..1000</a> %e A361394 The a(1) = 1 through a(7) = 11 partitions: %e A361394 (1) (2) (3) (4) (5) (6) (7) %e A361394 (11) (21) (22) (32) (33) (43) %e A361394 (31) (41) (42) (52) %e A361394 (211) (221) (51) (61) %e A361394 (311) (321) (322) %e A361394 (2111) (411) (331) %e A361394 (2211) (421) %e A361394 (3111) (511) %e A361394 (2221) %e A361394 (3211) %e A361394 (4111) %p A361394 b:= proc(n, i, t) option remember; `if`(n=0, `if`(t>=0, 1, 0), %p A361394 `if`(i<1, 0, add(b(n-i*j, i-1, t+`if`(j>0, 2, 0)-j), j=0..n/i))) %p A361394 end: %p A361394 a:= n-> b(n$2, 0): %p A361394 seq(a(n), n=0..50); # _Alois P. Heinz_, Mar 19 2023 %t A361394 Table[Length[Select[IntegerPartitions[n],2*Length[Union[#]]>=Length[#]&]],{n,0,30}] %Y A361394 The complement is counted by A360254, ranks A360558. %Y A361394 These partitions have ranks A361395. %Y A361394 A000041 counts integer partitions, strict A000009. %Y A361394 A008284 counts partitions by length, reverse A058398. %Y A361394 A067538 counts partitions with integer mean, strict A102627. %Y A361394 A116608 counts partitions by number of distinct parts. %Y A361394 Cf. A106529, A144300, A237363, A237832, A240219, A316413, A349156. %K A361394 nonn %O A361394 0,3 %A A361394 _Gus Wiseman_, Mar 17 2023