This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361397 #46 Mar 21 2023 13:26:19 %S A361397 1,1,0,1,2,0,1,4,2,0,1,6,20,4,0,1,8,54,176,10,0,1,10,104,996,1876,28, %T A361397 0,1,12,170,2944,22734,22064,84,0,1,14,252,6500,108136,577692,275568, %U A361397 264,0,1,16,350,12144,332050,4525888,15680628,3584064,858,0 %N A361397 Number A(n,k) of k-dimensional cubic lattice walks with 2n steps from origin to origin and avoiding early returns to the origin; square array A(n,k), n>=0, k>=0, read by antidiagonals. %C A361397 Column k is INVERTi transform of k-th row of A287318. %H A361397 Alois P. Heinz, <a href="/A361397/b361397.txt">Antidiagonals n = 0..140, flattened</a> %F A361397 A(n,1)/2 = A000108(n-1) for n >= 1. %F A361397 G.f. of column k: 2 - 1/Integral_{t=0..oo} exp(-t)*BesselI(0,2*t*sqrt(x))^k dt. - _Shel Kaphan_, Mar 19 2023 %e A361397 Square array A(n,k) begins: %e A361397 1, 1, 1, 1, 1, 1, 1, ... %e A361397 0, 2, 4, 6, 8, 10, 12, ... %e A361397 0, 2, 20, 54, 104, 170, 252, ... %e A361397 0, 4, 176, 996, 2944, 6500, 12144, ... %e A361397 0, 10, 1876, 22734, 108136, 332050, 796860, ... %e A361397 0, 28, 22064, 577692, 4525888, 19784060, 62039088, ... %p A361397 b:= proc(n, i) option remember; `if`(n=0 or i=1, 1, %p A361397 add(b(n-j, i-1)*binomial(n, j)^2, j=0..n)) %p A361397 end: %p A361397 g:= proc(n, k) option remember; `if` (n<1, -1, %p A361397 -add(g(n-i, k)*(2*i)!*b(i, k)/i!^2, i=1..n)) %p A361397 end: %p A361397 A:= (n,k)-> `if`(n=0, 1, `if`(k=0, 0, g(n, k))): %p A361397 seq(seq(A(n, d-n), n=0..d), d=0..10); %t A361397 b[n_, 0] = 0; b[n_, 1] = 1; b[0, k_] = 1; %t A361397 b[n_, k_] := b[n, k] = Sum[Binomial[n, i]^2*b[i, k - 1], {i, 0, n}]; (* A287316 *) %t A361397 g[n_, k_] := g[n, k] = b[n, k]*Binomial[2 n, n]; (* A287318 *) %t A361397 a[n_, k_] := a[n, k] = g[n, k] - Sum[a[i, k]*g[n - i, k], {i, 1, n - 1}]; %t A361397 TableForm[Table[a[n, k], {k, 0, 10}, {n, 0, 10}]] (* _Shel Kaphan_, Mar 14 2023 *) %Y A361397 Columns k=0-5 give: A000007, |A002420|, A054474, A049037, A359801, A361364. %Y A361397 Rows n=0-2 give: A000012, A005843, A139271. %Y A361397 Main diagonal gives A361297. %Y A361397 Cf. A000108, A287318. %K A361397 nonn,tabl %O A361397 0,5 %A A361397 _Alois P. Heinz_, Mar 10 2023