This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361404 #13 Mar 11 2023 19:48:24 %S A361404 1,1,1,2,2,2,4,6,6,4,11,20,28,20,11,34,90,148,148,90,34,156,544,1144, %T A361404 1408,1144,544,156,1044,5096,13128,20364,20364,13128,5096,1044,12346, %U A361404 79264,250240,472128,580656,472128,250240,79264,12346 %N A361404 Triangle read by rows: T(n,k) is the number of graphs with loops on n unlabeled vertices with k loops. %C A361404 T(n,k) is the number of bicolored graphs on n nodes with k vertices having the first color. Adjacent vertices may have the same color. %H A361404 Andrew Howroyd, <a href="/A361404/b361404.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50) %F A361404 T(n,k) = T(n, n-k). %e A361404 Triangle begins: %e A361404 1; %e A361404 1, 1; %e A361404 2, 2, 2; %e A361404 4, 6, 6, 4; %e A361404 11, 20, 28, 20, 11; %e A361404 34, 90, 148, 148, 90, 34; %e A361404 156, 544, 1144, 1408, 1144, 544, 156; %e A361404 1044, 5096, 13128, 20364, 20364, 13128, 5096, 1044; %e A361404 ... %o A361404 (PARI) %o A361404 permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} %o A361404 edges(v) = {sum(i=2, #v, sum(j=1, i-1, gcd(v[i], v[j]))) + sum(i=1, #v, v[i]\2)} %o A361404 row(n) = {my(s=0); forpart(p=n, s+=permcount(p)*2^edges(p)*prod(i=1, #p, 1 + x^p[i])); Vecrev(s/n!)} %Y A361404 Columns k=0..2 are A000088, A000666(n-1), A303829. %Y A361404 Row sums are A000666. %Y A361404 Central coefficients are A361405. %Y A361404 Cf. A361361 (cubic). %K A361404 nonn,tabl %O A361404 0,4 %A A361404 _Andrew Howroyd_, Mar 11 2023