cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361420 a(n) is the unique number m such that A126168(m) = A361419(n).

Original entry on oeis.org

1, 6, 8, 15, 21, 52, 58, 82, 106, 118, 268, 158, 356, 1264, 1296, 388, 202, 214, 226, 130, 508, 524, 1936, 160, 138, 298, 692, 2608, 358, 3088, 288, 446, 454, 466, 932, 478, 432, 348, 1792, 538, 562, 578, 586, 12032, 1268, 748, 20736, 1348, 694, 706, 26368, 544, 758
Offset: 1

Views

Author

Amiram Eldar, Mar 11 2023

Keywords

Crossrefs

Similar sequences: A357313, A357325.

Programs

  • Mathematica
    f[p_, e_] := Module[{b = IntegerDigits[e, 2]}, m = Length[b]; Product[If[b[[j]] > 0, 1 + p^(2^(m - j)), 1], {j, 1, m}]]; is[1] = 0; is[n_] := Times @@ f @@@ FactorInteger[n] - n;
    seq[max_] := Module[{v = s = Table[0, {max}], i}, Do[i = is[k] + 1; If[i <= max, v[[i]]++; s[[i]] = k], {k, 1, max^2}]; s[[Position[v, 1] // Flatten]]];
    seq[500]
  • PARI
    s(n) = {my(f = factor(n), b); prod(i=1, #f~, b = binary(f[i, 2]); prod(k=1, #b, if(b[k], f[i, 1]^(2^(#b-k)) + 1, 1))) - n; }
    lista(nmax) = {my(v = w = vector(nmax+1)); for(k=1, nmax^2, i = s(k) + 1; if(i <= nmax+1, v[i] += 1; w[i] = k)); for(i = 1, nmax+1, if(v[i] == 1, print1(w[i], ", "))); }

Formula

A126168(a(n)) = A361419(n).