This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361426 #5 Mar 13 2023 13:30:57 %S A361426 2,2,6,12,16,48,53,120,320,280,1120,2240,2986,8960,17920,26880,53760, %T A361426 107520,134400,268800,537600,591360,1182720,2365440,2956800,5677056, %U A361426 11354112 %N A361426 Maximum difficulty level (see A361424 for the definition) for tiling an n X 2 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer. %C A361426 The only cases, currently known to the author, for which the maximum difficulty level is not an integer, are n = 7 (difficulty level 160/3) and n = 13 (difficulty level 8960/3). %e A361426 The following table shows all sets of pieces that give the maximum (n,2)-tiling difficulty level up to n = 27. %e A361426 \ Number of pieces of size %e A361426 n \ 1X1 | 1X2 | 1X3 | 1X4 | 1X5 | 1X7 | 2X2 | 2X3 %e A361426 ----+-----+-----+-----+-----+-----+-----+-----+---- %e A361426 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 %e A361426 2 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 %e A361426 3 | 1 | 1 | 1 | 0 | 0 | 0 | 0 | 0 %e A361426 4 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 %e A361426 4 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 %e A361426 5 | 1 | 2 | 0 | 0 | 1 | 0 | 0 | 0 %e A361426 5 | 0 | 3 | 0 | 1 | 0 | 0 | 0 | 0 %e A361426 6 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 %e A361426 7 | 0 | 1 | 4 | 0 | 0 | 0 | 0 | 0 %e A361426 8 | 2 | 0 | 2 | 1 | 0 | 0 | 1 | 0 %e A361426 8 | 0 | 1 | 2 | 1 | 0 | 0 | 1 | 0 %e A361426 9 | 1 | 0 | 3 | 2 | 0 | 0 | 0 | 0 %e A361426 10 | 2 | 0 | 2 | 1 | 0 | 0 | 2 | 0 %e A361426 11 | 1 | 0 | 3 | 2 | 0 | 0 | 1 | 0 %e A361426 12 | 1 | 0 | 3 | 2 | 0 | 0 | 0 | 1 %e A361426 12 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 0 %e A361426 13 | 1 | 0 | 3 | 2 | 0 | 0 | 2 | 0 %e A361426 14 | 0 | 0 | 4 | 3 | 0 | 0 | 1 | 0 %e A361426 15 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 1 %e A361426 16 | 0 | 0 | 4 | 3 | 0 | 0 | 2 | 0 %e A361426 17 | 0 | 0 | 4 | 3 | 0 | 0 | 1 | 1 %e A361426 18 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 2 %e A361426 19 | 0 | 0 | 4 | 3 | 0 | 0 | 2 | 1 %e A361426 20 | 0 | 0 | 4 | 3 | 0 | 0 | 1 | 2 %e A361426 21 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 3 %e A361426 22 | 0 | 0 | 5 | 2 | 0 | 1 | 2 | 1 %e A361426 22 | 0 | 0 | 5 | 0 | 3 | 0 | 2 | 1 %e A361426 22 | 0 | 0 | 4 | 3 | 0 | 0 | 2 | 2 %e A361426 23 | 0 | 0 | 5 | 2 | 0 | 1 | 1 | 2 %e A361426 23 | 0 | 0 | 5 | 0 | 3 | 0 | 1 | 2 %e A361426 23 | 0 | 0 | 4 | 3 | 0 | 0 | 1 | 3 %e A361426 24 | 0 | 0 | 5 | 2 | 0 | 1 | 0 | 3 %e A361426 24 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 3 %e A361426 24 | 0 | 0 | 4 | 3 | 0 | 0 | 0 | 4 %e A361426 25 | 0 | 0 | 3 | 4 | 0 | 1 | 0 | 3 %e A361426 26 | 0 | 0 | 5 | 2 | 0 | 1 | 1 | 3 %e A361426 26 | 0 | 0 | 5 | 0 | 3 | 0 | 1 | 3 %e A361426 27 | 0 | 0 | 5 | 2 | 0 | 1 | 0 | 4 %e A361426 27 | 0 | 0 | 5 | 0 | 3 | 0 | 0 | 4 %Y A361426 Second column of A361424. %Y A361426 Cf. A360631, A361218, A361224. %K A361426 nonn,more %O A361426 1,1 %A A361426 _Pontus von Brömssen_, Mar 11 2023