cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361426 Maximum difficulty level (see A361424 for the definition) for tiling an n X 2 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer.

This page as a plain text file.
%I A361426 #5 Mar 13 2023 13:30:57
%S A361426 2,2,6,12,16,48,53,120,320,280,1120,2240,2986,8960,17920,26880,53760,
%T A361426 107520,134400,268800,537600,591360,1182720,2365440,2956800,5677056,
%U A361426 11354112
%N A361426 Maximum difficulty level (see A361424 for the definition) for tiling an n X 2 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer.
%C A361426 The only cases, currently known to the author, for which the maximum difficulty level is not an integer, are n = 7 (difficulty level 160/3) and n = 13 (difficulty level 8960/3).
%e A361426 The following table shows all sets of pieces that give the maximum (n,2)-tiling difficulty level up to n = 27.
%e A361426     \           Number of pieces of size
%e A361426    n \  1X1 | 1X2 | 1X3 | 1X4 | 1X5 | 1X7 | 2X2 | 2X3
%e A361426   ----+-----+-----+-----+-----+-----+-----+-----+----
%e A361426    1  |  0  |  1  |  0  |  0  |  0  |  0  |  0  |  0
%e A361426    2  |  0  |  2  |  0  |  0  |  0  |  0  |  0  |  0
%e A361426    3  |  1  |  1  |  1  |  0  |  0  |  0  |  0  |  0
%e A361426    4  |  0  |  2  |  0  |  1  |  0  |  0  |  0  |  0
%e A361426    4  |  0  |  1  |  2  |  0  |  0  |  0  |  0  |  0
%e A361426    5  |  1  |  2  |  0  |  0  |  1  |  0  |  0  |  0
%e A361426    5  |  0  |  3  |  0  |  1  |  0  |  0  |  0  |  0
%e A361426    6  |  0  |  1  |  2  |  1  |  0  |  0  |  0  |  0
%e A361426    7  |  0  |  1  |  4  |  0  |  0  |  0  |  0  |  0
%e A361426    8  |  2  |  0  |  2  |  1  |  0  |  0  |  1  |  0
%e A361426    8  |  0  |  1  |  2  |  1  |  0  |  0  |  1  |  0
%e A361426    9  |  1  |  0  |  3  |  2  |  0  |  0  |  0  |  0
%e A361426   10  |  2  |  0  |  2  |  1  |  0  |  0  |  2  |  0
%e A361426   11  |  1  |  0  |  3  |  2  |  0  |  0  |  1  |  0
%e A361426   12  |  1  |  0  |  3  |  2  |  0  |  0  |  0  |  1
%e A361426   12  |  0  |  0  |  4  |  3  |  0  |  0  |  0  |  0
%e A361426   13  |  1  |  0  |  3  |  2  |  0  |  0  |  2  |  0
%e A361426   14  |  0  |  0  |  4  |  3  |  0  |  0  |  1  |  0
%e A361426   15  |  0  |  0  |  4  |  3  |  0  |  0  |  0  |  1
%e A361426   16  |  0  |  0  |  4  |  3  |  0  |  0  |  2  |  0
%e A361426   17  |  0  |  0  |  4  |  3  |  0  |  0  |  1  |  1
%e A361426   18  |  0  |  0  |  4  |  3  |  0  |  0  |  0  |  2
%e A361426   19  |  0  |  0  |  4  |  3  |  0  |  0  |  2  |  1
%e A361426   20  |  0  |  0  |  4  |  3  |  0  |  0  |  1  |  2
%e A361426   21  |  0  |  0  |  4  |  3  |  0  |  0  |  0  |  3
%e A361426   22  |  0  |  0  |  5  |  2  |  0  |  1  |  2  |  1
%e A361426   22  |  0  |  0  |  5  |  0  |  3  |  0  |  2  |  1
%e A361426   22  |  0  |  0  |  4  |  3  |  0  |  0  |  2  |  2
%e A361426   23  |  0  |  0  |  5  |  2  |  0  |  1  |  1  |  2
%e A361426   23  |  0  |  0  |  5  |  0  |  3  |  0  |  1  |  2
%e A361426   23  |  0  |  0  |  4  |  3  |  0  |  0  |  1  |  3
%e A361426   24  |  0  |  0  |  5  |  2  |  0  |  1  |  0  |  3
%e A361426   24  |  0  |  0  |  5  |  0  |  3  |  0  |  0  |  3
%e A361426   24  |  0  |  0  |  4  |  3  |  0  |  0  |  0  |  4
%e A361426   25  |  0  |  0  |  3  |  4  |  0  |  1  |  0  |  3
%e A361426   26  |  0  |  0  |  5  |  2  |  0  |  1  |  1  |  3
%e A361426   26  |  0  |  0  |  5  |  0  |  3  |  0  |  1  |  3
%e A361426   27  |  0  |  0  |  5  |  2  |  0  |  1  |  0  |  4
%e A361426   27  |  0  |  0  |  5  |  0  |  3  |  0  |  0  |  4
%Y A361426 Second column of A361424.
%Y A361426 Cf. A360631, A361218, A361224.
%K A361426 nonn,more
%O A361426 1,1
%A A361426 _Pontus von Brömssen_, Mar 11 2023