This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361428 #5 Mar 13 2023 13:31:07 %S A361428 4,12,48,80,480,2880,13440,53760,107520,322560,725760 %N A361428 Maximum difficulty level (see A361424 for the definition) for tiling an n X 4 rectangle with a set of integer-sided rectangles, rounded down to the nearest integer. %C A361428 For all currently known terms, the maximum difficulty level is an integer. %e A361428 The following table shows all sets of pieces that give the maximum (n,4)-tiling difficulty level up to n = 11. %e A361428 \ Number of pieces of size %e A361428 n \ 1X1 | 1X2 | 1X3 | 1X4 | 1X5 | 1X6 | 1X7 | 1X8 | 1X10| 2X2 | 2X3 | 2X4 %e A361428 ----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+---- %e A361428 1 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 %e A361428 2 | 0 | 2 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 %e A361428 2 | 0 | 1 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 %e A361428 3 | 0 | 1 | 2 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 %e A361428 4 | 0 | 1 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 %e A361428 5 | 0 | 1 | 3 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 %e A361428 6 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 %e A361428 6 | 0 | 0 | 2 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 %e A361428 7 | 0 | 3 | 0 | 0 | 2 | 1 | 0 | 0 | 0 | 0 | 1 | 0 %e A361428 7 | 0 | 0 | 3 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 | 0 %e A361428 8 | 0 | 3 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 2 | 0 | 0 %e A361428 9 | 0 | 3 | 0 | 0 | 1 | 0 | 1 | 1 | 0 | 1 | 1 | 0 %e A361428 9 | 0 | 3 | 0 | 0 | 0 | 2 | 0 | 1 | 0 | 1 | 1 | 0 %e A361428 9 | 0 | 0 | 3 | 1 | 2 | 1 | 1 | 0 | 0 | 0 | 0 | 0 %e A361428 10 | 0 | 2 | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | 1 | 1 %e A361428 11 | 1 | 2 | 0 | 0 | 0 | 0 | 1 | 2 | 0 | 1 | 2 | 0 %e A361428 11 | 1 | 1 | 0 | 0 | 1 | 2 | 0 | 0 | 1 | 2 | 1 | 0 %Y A361428 Fourth column of A361424. %Y A361428 Cf. A361220. %K A361428 nonn,more %O A361428 1,1 %A A361428 _Pontus von Brömssen_, Mar 11 2023