A361442 Infinite triangle T(n, k), n, k >= 0, read and filled by rows the greedy way with distinct integers such that for any n, k >= 0, T(n, k) + T(n+1, k) + T(n+1, k+1) = 0; each term is minimal in absolute value and in case of a tie, preference is given to the positive value.
0, 1, -1, 2, -3, 4, 3, -5, 8, -12, 5, -8, 13, -21, 33, 6, -11, 19, -32, 53, -86, -2, -4, 15, -34, 66, -119, 205, 9, -7, 11, -26, 60, -126, 245, -450, 10, -19, 26, -37, 63, -123, 249, -494, 944, 7, -17, 36, -62, 99, -162, 285, -534, 1028, -1972
Offset: 0
Examples
Triangle begins: 0 1 -1 2 -3 4 3 -5 8 -12 5 -8 13 -21 33 6 -11 19 -32 53 -86 -2 -4 15 -34 66 -119 205 9 -7 11 -26 60 -126 245 -450 10 -19 26 -37 63 -123 249 -494 944 7 -17 36 -62 99 -162 285 -534 1028 -1972
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10010
- Rémy Sigrist, Colored representation of the first 500 rows (the color is function of the sign of T(n, k))
- Rémy Sigrist, PARI program
Programs
-
PARI
See Links section.
Formula
T(n, 0) = A361443(n).
T(n, k) = (-1)^k * Sum_{i = 0..k} binomial(k, i) * T(n-i, 0).
Comments