This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361455 #10 May 04 2023 14:57:12 %S A361455 1,0,1,0,1,3,0,18,21,25,0,1606,1173,774,543,0,565080,271790,122595, %T A361455 59830,29281,0,734774776,229224750,70500705,25349355,10110735,3781503, %U A361455 0,3523091615568,685793359804,138122171880,35130437825,11002159455,3767987307,1138779265 %N A361455 Triangle read by rows: T(n,k) is the number of simple digraphs on labeled n nodes with k strongly connected components. %H A361455 Andrew Howroyd, <a href="/A361455/b361455.txt">Table of n, a(n) for n = 0..1325</a> (rows 0..50). %F A361455 T(n,k) = A361269(n,k)/2^n. %e A361455 Triangle begins: %e A361455 1; %e A361455 0, 1; %e A361455 0, 1, 3; %e A361455 0, 18, 21, 25; %e A361455 0, 1606, 1173, 774, 543; %e A361455 0, 565080, 271790, 122595, 59830, 29281; %e A361455 0, 734774776, 229224750, 70500705, 25349355, 10110735, 3781503; %e A361455 ... %o A361455 (PARI) %o A361455 Z(p, f)={my(n=serprec(p, x)); serconvol(p, sum(k=0, n-1, x^k*f(k), O(x^n)))} %o A361455 G(e, p)={Z(p, k->1/e^(k*(k-1)/2))} %o A361455 U(e, p)={Z(p, k->e^(k*(k-1)/2))} %o A361455 DigraphEgf(n, e)={sum(k=0, n, e^(k*(k-1))*x^k/k!, O(x*x^n) )} %o A361455 T(n)={my(e=2); [Vecrev(p) | p<-Vec(serlaplace(U(e, 1/G(e, exp(y*log(U(e, 1/G(e, DigraphEgf(n, e)))))))))]} %o A361455 { my(A=T(6)); for(i=1, #A, print(A[i])) } %Y A361455 Column k=1 is A003030. %Y A361455 Main diagonal is A003024. %Y A361455 Row sums are A053763. %Y A361455 The unlabeled version is A361582. %Y A361455 Cf. A189898 (weak components), A361269 (loops allowed), A361591. %K A361455 nonn,tabl %O A361455 0,6 %A A361455 _Andrew Howroyd_, Mar 16 2023