cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361456 Irregular triangle read by rows. T(n,k) is the number of properly colored simple labeled graphs on [n] with exactly k edges, n >= 0, 0 <= k <= binomial(n,2).

This page as a plain text file.
%I A361456 #28 Mar 16 2023 04:50:40
%S A361456 1,1,3,2,13,30,24,6,75,372,780,872,546,180,24,541,4660,18180,42140,
%T A361456 64150,66900,48320,23820,7650,1440,120,4683,62130,385980,1487520,
%U A361456 3973770,7789032,11565360,13238520,11771130,8124710,4314420,1729440,506010,101880,12600,720
%N A361456 Irregular triangle read by rows. T(n,k) is the number of properly colored simple labeled graphs on [n] with exactly k edges, n >= 0, 0 <= k <= binomial(n,2).
%C A361456 The graphs of order n are properly colored from the color set {c_1, c_2,...,c_n} such that if c_i is used as a color then c_{i-1} is also used as a color.
%H A361456 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%F A361456 Sum_{n>=0} Sum_{k>=0} T(n,k)*w^k*z^n/((1+w)^binomial(n,2)*n!) = 1/(1-(E(z,w)-1)) where E(z,w) = Sum_{n>=0} z^n/(1+w)^binomial(n,2)*n!.
%e A361456 Triangle begins:
%e A361456    1;
%e A361456    1;
%e A361456    3,   2;
%e A361456   13,  30,  24,   6;
%e A361456   75, 372, 780, 872, 546, 180, 24;
%e A361456   ...
%t A361456 nn = 8;e[z_, w_] := Sum[z^n/(n! (1 + w)^Binomial[n, 2]), {n, 0, Binomial[nn, 2]}]; Map[CoefficientList[Series[#, {w, 0, Binomial[nn, 2]}], w] &,Table[n! (1 + w)^Binomial[n, 2], {n, 0, nn}] CoefficientList[Series[1/(1 - (e[z, w] - 1)), {z, 0, nn}], z]]
%Y A361456 Cf. A334282 (row sums), A000670 (column k=0), A000142 (main diagonal), A046860.
%K A361456 nonn,tabf
%O A361456 0,3
%A A361456 _Geoffrey Critzer_, Mar 12 2023