cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361472 Size of the symmetric differences of {1,2,3,4,5}, {2,4,6,8,10}, ..., {n,2n,3n,4n,5n}.

This page as a plain text file.
%I A361472 #20 May 21 2023 20:18:58
%S A361472 5,6,7,8,5,10,15,16,17,18,23,24,29,30,31,32,37,42,47,48,49,50,55,56,
%T A361472 53,54,55,56,61,58,63,64,65,66,63,64,69,70,71,72,77,82,87,88,89,90,95,
%U A361472 96,101,102,103,104,109,114,111,112,113,114,119,120,125,126,127
%N A361472 Size of the symmetric differences of {1,2,3,4,5}, {2,4,6,8,10}, ..., {n,2n,3n,4n,5n}.
%H A361472 Ray Chandler, <a href="/A361472/b361472.txt">Table of n, a(n) for n = 1..1000</a>
%H A361472 P. Y. Huang, W. F. Ke, and G. F. Pilz, <a href="https://doi.org/10.1090/S0002-9939-09-10189-2">The cardinality of some symmetric differences</a>, Proc. Amer. Math. Soc., 138 (2010), 787-797.
%H A361472 <a href="/index/Rec#order_61">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).
%F A361472 G.f.: x*(x^59 +5*x^58 +x^57 +x^56 +x^55 -3*x^54 +5*x^53 +5*x^52 +x^51 +x^50 +x^49 +5*x^48 +x^47 +5*x^46 +x^45 +x^44 +x^43 +5*x^42 +5*x^41 +5*x^40 +x^39 +x^38 +x^37 +5*x^36 +x^35 -3*x^34 +x^33 +x^32 +x^31 +5*x^30 -3*x^29 +5*x^28 +x^27 +x^26 +x^25 -3*x^24 +x^23 +5*x^22 +x^21 +x^20 +x^19 +5*x^18 +5*x^17 +5*x^16 +x^15 +x^14 +x^13 +5*x^12 +x^11 +5*x^10 +x^9 +x^8 +x^7 +5*x^6 +5*x^5 -3*x^4 +x^3 +x^2 +x +5) / (x^61 -x^60 -x +1). - _Alois P. Heinz_, May 17 2023
%t A361472 delta[l_, m_] := Complement[Join[l, m], Intersection[l, m]];
%t A361472 Nabl[s_, n_] := (d = {}; Do[d = delta[d, s*j], {j, Range[n]}]; d);
%t A361472 Table[Length[Nabl[Range[1, 5], n]], {n, 100}]
%Y A361472 Cf. A361458, A361471.
%K A361472 nonn,easy
%O A361472 1,1
%A A361472 _Guenter Pilz_, May 17 2023