cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361477 a(n) is the number of integers whose binary expansions have the same multiset of run-lengths as that of n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 1, 3, 1, 3, 2, 1, 2, 3, 4, 3, 4, 1, 4, 3, 2, 3, 4, 3, 2, 3, 2, 1, 2, 3, 4, 6, 6, 5, 6, 6, 4, 5, 1, 5, 6, 5, 4, 3, 2, 6, 6, 1, 6, 5, 6, 6, 1, 6, 4, 6, 2, 3, 2, 1, 2, 3, 4, 6, 12, 5, 12, 3, 12, 10, 6, 10, 4, 10, 12, 6, 4, 5, 6, 10
Offset: 0

Views

Author

Rémy Sigrist, Mar 13 2023

Keywords

Comments

This sequence has similarities with A090706; here we consider multisets of run-lengths, there multisets of digits in binary expansions.

Examples

			For n = 18:
- the binary expansion of 18 is "10010",
- the corresponding multiset of run-lengths is m = (1, 2, 1, 1),
- m has 4 terms: 3 times "1" and once "2",
- so a(18) = 4! / (3! * 1!) = 4.
		

Crossrefs

Programs

  • PARI
    a(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); my (s=Set(r), f=vector(#s)); for (k=1, #r, f[setsearch(s, r[k])]++); (#r)! / prod(k=1, #f, f[k]!) }
    
  • Python
    from math import factorial, prod
    from itertools import groupby
    from collections import Counter
    def A361477(n): return factorial(len(c:=[len(list(g)) for k, g in groupby(bin(n)[2:])]))//prod(map(factorial,Counter(c).values())) # Chai Wah Wu, Mar 16 2023

Formula

a(n) = 1 iff n = 0 or n belongs to A140690.