cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361487 Odd numbers k that are neither prime powers nor squarefree, such that k/rad(k) >= q, where rad(k) = A007947(k) and prime q = A119288(k).

Original entry on oeis.org

75, 135, 147, 189, 225, 245, 363, 375, 405, 441, 507, 525, 567, 605, 675, 735, 825, 845, 847, 867, 875, 891, 945, 975, 1029, 1053, 1083, 1089, 1125, 1183, 1215, 1225, 1275, 1323, 1375, 1377, 1425, 1445, 1485, 1521, 1539, 1575, 1587, 1617, 1625, 1701, 1715, 1725, 1755, 1805, 1815, 1859, 1863, 1875, 1911
Offset: 1

Views

Author

Michael De Vlieger, Mar 29 2023

Keywords

Comments

Odd terms in A360768, which itself is a proper subsequence of A126706.
Odd numbers k such that there exists j such that 1 < j < k and rad(j) = rad(k), but j does not divide k.

Examples

			a(1) = 75, since 75/15 >= 5. We note that rad(45) = rad(75) = 15, yet 45 does not divide 75.
a(2) = 135, since 135/15 >= 5. Note: rad(75) = rad(135) = 15, yet 45 does not divide 135.
a(3) = 147, since 147/21 >= 7. Note: rad(63) = rad(147) = 21, yet 147 mod 63 = 21.
Chart below shows k < a(n) such that rad(k) = rad(n), yet k does not divide n:
      75 | 45   .
     135 |  .   .  75   .   .
     147 |  .  63   .   .   .   .
     189 |  .   .   .   .   .   . 147   .   .   .
a(n) 225 |  .   .   .   .   . 135   .   .   .   .   .   .
     245 |  .   .   .   .   .   .   .   .   . 175   .   .   .
     363 |  .   .   .  99   .   .   .   .   .   .   .   .   .   .   .   .   . 297
     375 | 45   .   .   .   . 135   .   .   .   .   .   . 225   .   .   .   .   .
     ----------------------------------------------------------------------------
         | 45  63  75  99 117 135 147 153 171 175 189 207 225 245 261 275 279 297
                                        k in A360769
		

Crossrefs

Programs

  • Mathematica
    Select[Select[Range[1, 2000, 2], Nor[SquareFreeQ[#], PrimePowerQ[#]] &], #1/#2 >= #3 & @@ {#1, Times @@ #2, #2[[2]]} & @@ {#, FactorInteger[#][[All, 1]]} &]
  • PARI
    is(k) = { if (k%2, my (f = factor(k)); #f~ > 1 && k/vecprod(f[,1]~) >= f[2, 1], 0); } \\ Rémy Sigrist, Mar 29 2023

Formula

This sequence is { odd k in A126706 : k/A007947(k) >= A119288(k) }.