cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A359143 The sum-and-erase sequence starting at 11: a(0) = 11; for n>=1, let m = a(n-1), and if m < 0, change m to an improper decimal "number" by replacing the minus sign by a single leading zero; then a(n) = A359142(m).

Original entry on oeis.org

11, 112, 1124, 11248, 2486, 4860, 486018, 48601827, 4860182736, 8601827365, 860182736546, 86018273654656, 8601827365465667, 601273654656670, -1273545704, -127354570438, -12735457043849, -1273545704384962, 1273545743849627, 127354574384962777, 273545743849627779
Offset: 0

Views

Author

N. J. A. Sloane, Jan 31 2023, based on suggestions from Eric Angelini and Hans Havermann

Keywords

Comments

Although this entry was only created in January, 2023, the problem had already been extensively studied in 2022.
Comment from Michael S. Branicky, Jul 26 2022: (Start)
Starting at 11, this first reaches 0 at step 1399141.
The longest string encountered has length 222:
444444414144444454144444145454455155154545515454564756517555545657676664\
465677675961617616416561527541551562575592651853254255356658359962263264\
365667368971272273374676377982812823836853869892911922935952968991101010\
121016.
(End)
It is conjectured that every starting number will eventually enter a cycle or reach 0 (see A359142 for small examples).
The first nontrivial cycle has length 583792 and the smallest number in it is 3374 (see the "Cycles in ..." Havermann link).
There is no b-file, but instead there is an a-file from Hans Havermann giving the sequence in full in b-file format, from a(0) to a(1399141). Beware, this is a 106.5 MB file. - N. J. A. Sloane, Feb 01 2023
From Michael S. Branicky, Sep 06 2023: (Start)
There are additional cycles with lengths
- 20173, containing 34674044445,
- 46, containing 9982228989928229222222829202026260298265278295291026. (End)

Crossrefs

Programs

  • Mathematica
    a[1] = {1, 1}; nn = 21; Do[If[FreeQ[#3, #2], Set[k, #1~Join~#3], Set[k, #1~Join~#3]; Set[k, DeleteCases[#1~Join~#3, #2]]] & @@ {#, First[#], IntegerDigits@ Total[#]} &[a[n - 1]]; Set[a[n], k], {n, 2, nn}]; Array[(1 - 2 Boole[First[#] == 0])*FromDigits@ # &@ a[#] &, nn] (* Michael De Vlieger, Mar 16 2023 *)
Showing 1-1 of 1 results.