This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361503 #15 Mar 19 2023 10:20:26 %S A361503 2,3,5,2,3,5,7,3,2,5,7,11,3,5,7,11,5,3,7,5,11,7,2,3,5,7,11,5,7,2,3,5, %T A361503 7,3,5,7,2,5,7,11,13,5,2,3,5,2,7,3,5,7,11,5,3,2,5,7,11,2,5,3,7,5,3,7, %U A361503 2,11,3,7,5,3,7,5,11,7,5,11,7,5,3,7,11,3,2,5,7,2,5,3,2,5,7,13,3,5,2,3 %N A361503 a(1)=2; thereafter a(n) = smallest prime that does not divide b(n-1)*b(n), where b(k) = A359804(k). %C A361503 Understanding this sequence is the key to analyzing A359804. %H A361503 Michael De Vlieger, <a href="/A361503/b361503.txt">Table of n, a(n) for n = 1..16383</a> %e A361503 b(1)=1, b(2)=2, b(3)=3, b(4)=5, so a(2) = smallest prime not dividing 2, which is 3. a(3) = smallest prime not dividing 2*3, which is 5, and a(4) = smallest prime not dividing 3*5, which is 2. %t A361503 nn = 120; c[_] = False; q[_] = 1; %t A361503 Array[Set[{a[#], c[#]}, {#, True}] &, 2]; %t A361503 Set[{i, j}, {a[1], a[2]}]; u = 3; %t A361503 {2}~Join~Reap[Do[ %t A361503 (k = q[#]; While[c[k #], k++]; k *= #; %t A361503 While[c[# q[#]], q[#]++]) &[(p = 2; %t A361503 While[Divisible[i j, p], p = NextPrime[p]]; p)]; Sow[p]; %t A361503 Set[{a[n], c[k], i, j}, {k, True, j, k}]; %t A361503 If[k == u, While[c[u], u++]], {n, 3, nn}] ][[-1, -1]] (* _Michael De Vlieger_, Mar 18 2023 *) %Y A361503 Cf. A053669, A359804. %K A361503 nonn %O A361503 1,1 %A A361503 _N. J. A. Sloane_, Mar 18 2023