This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361511 #38 Apr 09 2023 11:29:41 %S A361511 1,1,2,2,3,2,4,3,5,2,4,6,4,7,2,4,6,8,4,7,11,2,5,7,9,3,6,10,4,8,11,13, %T A361511 2,4,6,8,10,13,15,4,8,12,6,9,13,15,17,2,4,7,11,15,19,2,4,8,11,15,21,4, %U A361511 8,11,13,17,19,21,24,8,10,12,16,5,7,9,12,16,18,6,10,14,4,7,11,13,15,17,19,23 %N A361511 a(1) = 1. Thereafter if a(n-1) is a novel term, a(n) = d(a(n-1)); otherwise, if a(n-1) is the t-th non-novel term, a(n) = a(n-1) + d(a(t)), where d is the divisor function A000005. %C A361511 Inspired by A360179, but uses a simpler rule for non-novel terms. %C A361511 It is an obvious conjecture that every number eventually appears, but is there a proof? %H A361511 Michael De Vlieger, <a href="/A361511/b361511.txt">Table of n, a(n) for n = 1..40000</a> %H A361511 Michael De Vlieger, <a href="/A361511/a361511.png">Scatterplot of a(n)</a>, n = 1..2^16, showing records in red, smallest missing numbers in blue (small until they enter sequence, then large), terms deriving from novel predecessors in gold, otherwise green. %H A361511 Michael De Vlieger, <a href="/A361511/a361511_1.png">Plot that shows the increasing subsequences that form the rows when the sequence is regarded as an irregular triangle</a> %e A361511 The initial terms (in the third column, N = novel term, D = non-novel term): %e A361511 .n.a(n).....t %e A361511 .1,..1,.N, %e A361511 .2,..1,.D,..1 %e A361511 .3,..2,.N, %e A361511 .4,..2,.D,..2 %e A361511 .5,..3,.N, %e A361511 .6,..2,.D,..3 %e A361511 .7,..4,.N, %e A361511 .8,..3,.D,..4 %e A361511 .9,..5,.N, %e A361511 10,..2,.D,..5 %e A361511 11,..4,.D,..6 %e A361511 12,..6,.N, %e A361511 13,..4,.D,..7 %e A361511 14,..7,.N, %e A361511 15,..2,.D,..8 %e A361511 16,..4,.D,..9 %e A361511 17,..6,.D,.10 %e A361511 18,..8,.N, %e A361511 19,..4,.D,.11 %e A361511 20,..7,.D,.12 %e A361511 21,.11,.N, %e A361511 22,..2,.D,.13 %e A361511 ... %e A361511 If n=8, for example, a(8) = 3 is a non-novel term, the 4th such, so a(9) = a(8) + d(a(4)) = 3 + d(2) = 5. %e A361511 Comment from _Michael De Vlieger_, Apr 08 2023 (Start) %e A361511 Can be read as an irregular triangle of increasing subsequences: %e A361511 1; %e A361511 1, 2; %e A361511 2, 3; %e A361511 2, 4; %e A361511 3, 5; %e A361511 2, 4, 6; %e A361511 4, 7; %e A361511 2, 4, 6, 8; %e A361511 4, 7, 11; %e A361511 2, 5, 7, 9; %e A361511 3, 6, 10; %e A361511 4, 8, 11, 13; %e A361511 2, 4, 6, 8, 10, 13, 15; %e A361511 4, 8, 12; %e A361511 6, 9, 13, 15, 17; %e A361511 2, 4, 7, 11, 15, 19; %e A361511 etc. %e A361511 (End) %e A361511 The rows end with the novel terms - see A361512, A361513 - and their lengths are given by A361514. %t A361511 nn = 120; c[_] = False; f[n_] := DivisorSigma[0, n]; a[1] = m = 1; Do[(If[c[#], a[n] = # + f[a[m]] ; m++, a[n] = f[#] ]; c[#] = True) &[a[n - 1]], {n, 2, nn}]; Array[a, nn] (* _Michael De Vlieger_, Apr 08 2023 *) %Y A361511 Cf. A000005, A360179, A361512-A361516, A362095. %K A361511 nonn,tabf %O A361511 1,3 %A A361511 _N. J. A. Sloane_, Apr 08 2023