This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361518 #17 Dec 31 2024 11:13:56 %S A361518 3,2,9,7,6,5,3,1,4,9,5,6,6,9,9,1,0,7,6,1,7,8,6,3,4,1,7,5,5,5,2,1,8,6, %T A361518 0,4,2,7,0,1,3,7,3,9,1,1,4,0,6,9,2,4,1,4,4,0,2,9,0,8,3,5,4,7,6,2,0,0, %U A361518 6,2,8,3,7,3,1,5,6,7,1,7,2,8,6,1,1,8,2,6,3,6,4,8,6,3,6,2,7,1,4,0,8,0,1,6,5 %N A361518 Decimal expansion of arccoth(Pi). %D A361518 Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 31, page 291. %H A361518 Michael I. Shamos, <a href="http://euro.ecom.cmu.edu/people/faculty/mshamos/cat.pdf">A catalog of the real numbers</a> (2011). %F A361518 Equals arctanh(1/Pi). %F A361518 Equals (log(1 + 1/Pi) - log(1 - 1/Pi))/2. %F A361518 Equals Sum_{k>=0} (Pi^(-2k - 1))/(2k + 1). %F A361518 Equals Integral_{x=1..(1 + 1/Pi)} 1/(2x - x^2) dx. %e A361518 0.329765314956699107617863417555218604270137391140692414402908354762... %t A361518 RealDigits[ArcCoth[Pi], 10, 105][[1]] %o A361518 (PARI) atanh(1/Pi) \\ _Michel Marcus_, Mar 15 2023 %Y A361518 Cf. A359540, A360938, A361519. %K A361518 cons,nonn %O A361518 0,1 %A A361518 _Wolfe Padawer_, Mar 14 2023