A361522 The aerated factorial numbers.
1, 0, 1, 0, 2, 0, 6, 0, 24, 0, 120, 0, 720, 0, 5040, 0, 40320, 0, 362880, 0, 3628800, 0, 39916800, 0, 479001600, 0, 6227020800, 0, 87178291200, 0, 1307674368000, 0, 20922789888000, 0, 355687428096000, 0, 6402373705728000, 0, 121645100408832000, 0, 2432902008176640000
Offset: 0
Keywords
Links
- Sebastian Volz, Design and Implementation of Efficient Algorithms for Operations on Partitions of Sets, Bachelor Thesis, Saarland Univ. (Germany, 2023). See p. 45.
- Eric Weisstein's World of Mathematics, Error function erf.
Programs
-
Maple
egf := (z/2)*Pi^(1/2)*erf(z/2)*exp((z/2)^2) + 1: ser := series(egf, z, 42): seq(n!*coeff(ser, z, n), n = 0..40);
-
Mathematica
a[n_] := If[OddQ[n], 0, (n/2)!]; Array[a, 41, 0] (* Amiram Eldar, Mar 14 2023 *)
Formula
a(n) = n! * [z^n] (z/2)*Pi^(1/2)*erf(z/2)*exp((z/2)^2) + 1.
a(n) = n! * [z^n] 1 + 2*u*exp(u)*hypergeom([1/2], [3/2], -u), where u = (z/2)^2.
Comments