This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361527 #23 Mar 16 2023 04:50:35 %S A361527 1,0,1,0,1,3,0,2,21,25,0,6,213,774,543,0,24,3470,30275,59830,29281,0, %T A361527 120,95982,1847265,7757355,10110735,3781503,0,720,4578588,190855000, %U A361527 1522899105,3944546095,3767987307,1138779265 %N A361527 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] having exactly k strongly connected components all of which are simple cycles, n >= 0, 0 <= k <= n. %C A361527 Here, a strongly connected component containing exactly 1 vertex is considered a cycle. %H A361527 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019. %H A361527 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354. %H A361527 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SimpleDirectedGraph.html">Simple Directed Graph</a> %H A361527 Wikipedia, <a href="https://en.wikipedia.org/wiki/Strongly_connected_component">Strongly connected component</a> %e A361527 1; %e A361527 0, 1; %e A361527 0, 1, 3; %e A361527 0, 2, 21, 25; %e A361527 0, 6, 213, 774, 543; %e A361527 0, 24,3470, 30275, 59830, 29281; %e A361527 ... %t A361527 nn = 7; %t A361527 a[x_] := Log[1/(1 - x)]; %t A361527 begfa =Total[CoefficientList[ Series[1/(Total[ CoefficientList[Series[ Exp[-u *a[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}], z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]]; %t A361527 Table[Take[(Range[0, nn]! CoefficientList[begfa, {z, u}])[[i]],i], {i, 1, nn + 1}] // Grid %Y A361527 Cf. A011266 (row sums), A003024 (main diagonal), A000142 (column k=1). %K A361527 nonn,tabl %O A361527 0,6 %A A361527 _Geoffrey Critzer_, Mar 14 2023