cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361527 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] having exactly k strongly connected components all of which are simple cycles, n >= 0, 0 <= k <= n.

This page as a plain text file.
%I A361527 #23 Mar 16 2023 04:50:35
%S A361527 1,0,1,0,1,3,0,2,21,25,0,6,213,774,543,0,24,3470,30275,59830,29281,0,
%T A361527 120,95982,1847265,7757355,10110735,3781503,0,720,4578588,190855000,
%U A361527 1522899105,3944546095,3767987307,1138779265
%N A361527 Triangular array read by rows.  T(n,k) is the number of labeled digraphs on [n] having exactly k strongly connected components all of which are simple cycles, n >= 0, 0 <= k <= n.
%C A361527 Here, a strongly connected component containing exactly 1 vertex is considered a cycle.
%H A361527 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%H A361527 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
%H A361527 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/SimpleDirectedGraph.html">Simple Directed Graph</a>
%H A361527 Wikipedia, <a href="https://en.wikipedia.org/wiki/Strongly_connected_component">Strongly connected component</a>
%e A361527   1;
%e A361527   0,  1;
%e A361527   0,  1,   3;
%e A361527   0,  2,  21,    25;
%e A361527   0,  6, 213,   774,   543;
%e A361527   0, 24,3470, 30275, 59830, 29281;
%e A361527   ...
%t A361527  nn = 7;
%t A361527 a[x_] := Log[1/(1 - x)];
%t A361527 begfa =Total[CoefficientList[ Series[1/(Total[ CoefficientList[Series[ Exp[-u *a[x]], {x, 0, nn}], x]* Table[z^n/(2^Binomial[n, 2]), {n, 0, nn}]]), {z, 0, nn}], z]*Table[z^n 2^Binomial[n, 2], {n, 0, nn}]];
%t A361527 Table[Take[(Range[0, nn]! CoefficientList[begfa, {z, u}])[[i]],i], {i, 1, nn + 1}] // Grid
%Y A361527 Cf. A011266 (row sums), A003024 (main diagonal), A000142 (column k=1).
%K A361527 nonn,tabl
%O A361527 0,6
%A A361527 _Geoffrey Critzer_, Mar 14 2023