This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361530 #11 Apr 16 2023 09:48:04 %S A361530 23,37,53,73,113,127,131,137,139,151,157,173,179,193,197,211,223,229, %T A361530 233,239,241,271,283,293,311,313,317,331,337,347,353,359,367,373,379, %U A361530 383,389,397,421,431,433,457,523,541,547,571,593,613,617,631,673,677,719 %N A361530 Primes that can be written as the result of shuffling the decimal digits of two primes. %C A361530 Each term is essentially an element of the shuffle product of the decimal digits of two primes (possibly equal). %H A361530 Michael S. Branicky, <a href="/A361530/b361530.txt">Table of n, a(n) for n = 1..10000</a> %H A361530 John D. Cook, <a href="https://www.johndcook.com/blog/2023/03/13/shuffle-product/">Shuffle product</a>. %H A361530 Wikipedia, <a href="https://en.wikipedia.org/wiki/Shuffle_algebra#Shuffle_product">Shuffle product</a>. %e A361530 37 and 73 are in the sequence because they are both the result of shuffling 3 and 7. %e A361530 127 is in the sequence because it is the result of shuffling 2 and the digits of 17. %e A361530 1193 is in the sequence because it is the result of shuffling the digits of 13 and the digits of 19. %e A361530 163 is not in the sequence because it is not the result of shuffling the digits of two primes. 163 is the result of permuting the digits of 3 and 61; however, 163 contains the digits of 61 in the wrong order. %o A361530 (Python) %o A361530 import sympy %o A361530 def get_shuffle_product(list_1, list_2): %o A361530 shuffle_product = set() %o A361530 shuffle = [] %o A361530 _get_shuffle_product(list_1, list_2, shuffle, shuffle_product) %o A361530 return shuffle_product %o A361530 def _get_shuffle_product(list_1, list_2, shuffle, shuffle_product): %o A361530 if len(list_1) == 0 and len(list_2) == 0: %o A361530 shuffle_product.add(tuple(shuffle)) %o A361530 return %o A361530 else: %o A361530 if len(list_1) == 0: %o A361530 shuffle.append(list_2[0]) %o A361530 _get_shuffle_product(list_1, list_2[1:], shuffle, shuffle_product) %o A361530 shuffle.pop() %o A361530 elif len(list_2) == 0: %o A361530 shuffle.append(list_1[0]) %o A361530 _get_shuffle_product(list_1[1:], list_2, shuffle, shuffle_product) %o A361530 shuffle.pop() %o A361530 else: %o A361530 shuffle.append(list_1[0]) %o A361530 _get_shuffle_product(list_1[1:], list_2, shuffle, shuffle_product) %o A361530 shuffle.pop() %o A361530 shuffle.append(list_2[0]) %o A361530 _get_shuffle_product(list_1, list_2[1:], shuffle, shuffle_product) %o A361530 shuffle.pop() %o A361530 max_prime_index = 25 # one and two digit primes. %o A361530 max_element = 999 %o A361530 prime_set = set() %o A361530 for p_index in range(1, max_prime_index+1): %o A361530 p = sympy.prime(p_index) %o A361530 for q_index in range(p_index, max_prime_index+1): %o A361530 q = sympy.prime(q_index) %o A361530 list_p = list(str(p)) %o A361530 list_q = list(str(q)) %o A361530 shuffle_product = get_shuffle_product(list_p, list_q) %o A361530 for s in shuffle_product: %o A361530 candidate = int(''.join(s)) %o A361530 if sympy.isprime(candidate) and candidate <= max_element: %o A361530 prime_set.add(candidate) %o A361530 print(sorted(prime_set)) %o A361530 (Python) %o A361530 from sympy import isprime %o A361530 from itertools import chain, combinations %o A361530 def powerset(s): # skipping empty set and entire set %o A361530 return chain.from_iterable(combinations(s, r) for r in range(1, len(s))) %o A361530 def ok(n): %o A361530 if not isprime(n): return False %o A361530 s = str(n) %o A361530 for indices in powerset(range(len(s))): %o A361530 t1 = "".join(s[i] for i in indices) %o A361530 t2 = "".join(s[i] for i in range(len(s)) if i not in indices) %o A361530 if t1[0] != "0" and t2[0] != "0" and isprime(int(t1)) and isprime(int(t2)): %o A361530 return True %o A361530 print([k for k in range(720) if ok(k)]) # _Michael S. Branicky_, Apr 16 2023 %Y A361530 Cf. A019549, A083427, A105184. %K A361530 nonn,base %O A361530 1,1 %A A361530 _Robert C. Lyons_, Mar 14 2023