This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361549 #7 Mar 24 2023 09:03:48 %S A361549 1,18,426,12040,401355,15456756,676130644,33151425840,1802216703285, %T A361549 107652497473180,7012494336544686,494963689847333928, %U A361549 37648456802884402111,3071415347513049808740,267644521958509484952360,24822151072519637091258976,2442314922307988498911793385 %N A361549 a(n) = A361540(n,2) for n >= 2, a column of triangle A361540. %C A361549 E.g.f. F(x,y) of triangle A361540 satisfies the following. %C A361549 (1) F(x,y) = Sum_{n>=0} (F(x,y)^n + y)^n * x^n/n!. %C A361549 (2) F(x,y) = Sum_{n>=0} F(x,y)^(n^2) * exp(y*x*F(x,y)^n) * x^n/n!. %C A361549 Column 0 near to this one in triangle A361540 has e.g.f. G(x) = Sum_{n>=0} G(x)^(n^2)*x^n/n!. %H A361549 Paul D. Hanna, <a href="/A361549/b361549.txt">Table of n, a(n) for n = 2..42</a> %e A361549 E.g.f.: A(x) = x^2/2! + 18*x^3/3! + 426*x^4/4! + 12040*x^5/5! + 401355*x^6/6! + 15456756*x^7/7! + 676130644*x^8/8! + 33151425840*x^9/9! + 1802216703285*x^10/10! + ... + a(n)*x^n/n! + ... %e A361549 a(n) is divisible by n*(n-1)/2, where a(n)*2/(n*(n-1)) begins %e A361549 [1, 6, 71, 1204, 26757, 736036, 24147523, 920872940, 40049260073, ...]. %o A361549 (PARI) /* E.g.f. of triangle A361540 is F(x,y) = Sum_{n>=0} (F(x,y)^n + y)^n * x^n/n! */ %o A361549 {A361540(n,k) = my(F = 1); for(i=1,n, F = sum(m=0, n, (F^m + y +x*O(x^n))^m * x^m/m! )); n!*polcoeff(polcoeff(F, n,x),k,y)} %o A361549 for(n=2, 20, print1(A361540(n,2), ", ")) %Y A361549 Cf. A361540, A361544. %K A361549 nonn %O A361549 2,2 %A A361549 _Paul D. Hanna_, Mar 20 2023