This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361562 #44 Apr 16 2023 10:39:08 %S A361562 3,7,11,19,23,31,43,79,127,167,191,199,347,3539,5807,10691,11279, %T A361562 12391,14479,83339,117239,127031,141079,269987,986191,4031399 %N A361562 Wagstaff numbers that are of the form 4*k + 3. %C A361562 13347311 and 13372531 are also in the sequence, but may not be the next terms. %H A361562 Jorge Coveiro, <a href="https://www.mersenneforum.org/showthread.php?t=28546">Possible 'Formula' for Wagstaff numbers</a>, mersenneforum.org. %F A361562 Intersection of A000978 and A002145. %o A361562 (Python) %o A361562 from itertools import count, islice %o A361562 from sympy import prime, isprime %o A361562 def A361562_gen(): # generator of terms %o A361562 return filter(lambda p: p&2 and isprime(((1<<p)+1)//3), (prime(n) for n in count(2))) %o A361562 A361562_list = list(islice(A361562_gen(),10)) # _Chai Wah Wu_, Mar 21 2023 %Y A361562 Cf. A000978 (Wagstaff numbers), A002145 (primes of form 4*k+3), A112633, A361563. %K A361562 nonn,more %O A361562 1,1 %A A361562 _Jorge Coveiro_, Mar 15 2023