cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361565 a(n) is the numerator of the median of divisors of n.

This page as a plain text file.
%I A361565 #20 Mar 18 2023 15:26:06
%S A361565 1,3,2,2,3,5,4,3,3,7,6,7,7,9,4,4,9,9,10,9,5,13,12,5,5,15,6,11,15,11,
%T A361565 16,6,7,19,6,6,19,21,8,13,21,13,22,15,7,25,24,7,7,15,10,17,27,15,8,15,
%U A361565 11,31,30,8,31,33,8,8,9,17,34,21,13,17,36,17,37,39,10
%N A361565 a(n) is the numerator of the median of divisors of n.
%H A361565 Winston de Greef, <a href="/A361565/b361565.txt">Table of n, a(n) for n = 1..10000</a>
%H A361565 <a href="/index/Di#divisors">Index entries for sequences related to divisors of numbers</a>
%F A361565 a(n) = numerator((A033676(n) + A033677(n))/2).
%F A361565 a(p) = (1 + p)/2 if p is an odd prime.
%F A361565 For p a prime, a(p^k) = (p^((k-1)/2) + p^((k+1)/2))/2 if k is odd, a(p^k) = p^(k/2) if k is even.
%e A361565 a(9) = 3 since the divisors of 9 are 1, 3, 9, and their median is 3.
%e A361565 a(12) = 7 since the divisors of 12 are 1, 2, 3, 4, 6, 12, and their median is 7/2.
%t A361565 a[n_]:=Numerator[Median[Divisors[n]]]; Array[a,75]
%o A361565 (PARI) a(n) = my(d=divisors(n), m=#d+1); numerator((d[m\2] + d[m-m\2])/2); \\ _Michel Marcus_, Mar 16 2023
%Y A361565 Cf. A027750, A033676, A033677, A071090, A139710, A139711, A361566 (denominator).
%K A361565 nonn,frac
%O A361565 1,2
%A A361565 _Stefano Spezia_, Mar 15 2023