This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361574 #26 Mar 28 2023 15:21:34 %S A361574 1,3,8,21,68,242,861,3151,11874,45192,173496,673042 %N A361574 a(n) is the number of Fibonacci meanders of length m*n and central angle 360/m degrees where m = 3. %C A361574 A binary curve C is a pair (m, S) such that %C A361574 (a) S is a list with values in {L, R} that %C A361574 (b) starts with an L, and %C A361574 (c) m > 0 is an integer that divides the length of S. %C A361574 Given a binary curve C = (m, S), we call m the modulus of the curve and S the steps of C. 'L' stands for a positively oriented arc (left turn) and 'R' for a negatively oriented arc (right turn). %C A361574 Let SS denote a pair of consecutive steps in C. The direction d of a curve at n starts with d = 0, and for n > 0, d = d + 1 if SS = LL and d = d - 1 if SS = RR; otherwise, d remains unchanged. %C A361574 A binary curve C = (m, S) is a meander if the values d mod m are assumed with equal frequency. A meander is a closed smooth curve in the plane, possibly self-overlapping (see the plots). %C A361574 A binary curve 'changes direction' if two consecutive steps are of the same type, i.e., is a pair of steps of the form LL or RR. %C A361574 A Fibonacci meander is a meander that does not change direction to the left except at the beginning of the curve, where any number of left turns can appear. %H A361574 Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, <a href="https://arxiv.org/abs/2202.06893">Enumeration of Dyck paths with air pockets</a>, arXiv:2202.06893 [cs.DM], 2022-2023. %H A361574 Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/FibonacciMeanders">Fibonacci meanders</a>. %H A361574 Susanne Wienand, <a href="https://oeis.org/wiki/User:Susanne_Wienand">Counting meanders by dynamic programming</a>. %H A361574 Susanne Wienand, Example of a meander, <a href="https://oeis.org/wiki/File:Meander,_m%3D3.png">Plot</a> and <a href="http://oeis.org/wiki/File:Meander_m%3D3.gif">animation</a>. %e A361574 For n = 4 the Fibonacci meanders with central angle 120 degrees and length 12, written as binary strings (L = 1, R = 0), are: %e A361574 100000010001, 100010000001, 110000000001, 100000100100, 100100000100, 100010001000, %e A361574 110000001000, 100100100000, 110001000000, 111000000000, 110100100101, 111001001001, %e A361574 111100010001, 111110000001, 111010010010, 111100100100, 111110001000, 111111000000, %e A361574 111111110001, 111111111000, 111111111111. %o A361574 (SageMath) %o A361574 def isFibonacci(S: list[bool]) -> bool: %o A361574 dir, os = True, S[0] %o A361574 for s in S: %o A361574 if s and os: %o A361574 if not dir: %o A361574 return False %o A361574 dir = True %o A361574 else: %o A361574 dir = False %o A361574 os = s %o A361574 return True %o A361574 def isMeander(n: int, S: list[bool]) -> bool: %o A361574 if S[0] != True: %o A361574 return False %o A361574 vec = [0] * n %o A361574 max = len(S) // n %o A361574 dir, ob = 0, True %o A361574 for b in S: %o A361574 if b and ob: %o A361574 dir += 1 %o A361574 elif not b and not ob: %o A361574 dir -= 1 %o A361574 dir = dir % n %o A361574 v = vec[dir] = vec[dir] + 1 %o A361574 if v > max: %o A361574 return False %o A361574 ob = b %o A361574 return True %o A361574 def FibonacciMeanders(m: int, steps: int) -> int: %o A361574 size = m * steps %o A361574 count = 0 %o A361574 for a in range(0, size + 1, m): %o A361574 S = [i < a for i in range(size)] %o A361574 for c in Permutations(S): %o A361574 if c[0] == 0: break %o A361574 if not isFibonacci(c): continue %o A361574 if not isMeander(m, c): continue %o A361574 count += 1 %o A361574 print(count) %o A361574 return count %o A361574 def FibonacciMeandersColumn(m: int, size: int) -> list[int]: %o A361574 return [FibonacciMeanders(m, n) for n in range(1, size + 1)] %o A361574 print([FibonacciMeandersColumn(3, n) for n in range(1, 7)]) %Y A361574 Cf. A000071 (m=1), A201631 (m=2), A197657. %K A361574 nonn,more %O A361574 1,2 %A A361574 _Peter Luschny_, Mar 16 2023