A361575 Number of Fibonacci meanders of length n.
1, 3, 5, 11, 13, 30, 34, 71, 97, 177, 233, 481, 610, 1157, 1677, 3027, 4181, 8016, 10946, 20379, 29534, 52461, 75025, 140748, 196778, 355979, 526123, 933044, 1346269, 2469992, 3524578, 6342729, 9400985, 16487211
Offset: 1
Examples
Fibonacci meanders with length 6 can have the central angle 360/m, where m is in divisors(6) = {1, 2, 3, 6}. In total there are a(6) = 30 such meanders, the list shows their binary representation together with the multiplicity with which they appear. 100000 x 1, 100001 x 2, 100010 x 1, 100100 x 2, 100101 x 1, 101000 x 1, 101001 x 1, 101010 x 1, 110000 x 2, 110001 x 2, 110010 x 1, 110100 x 1, 110101 x 1, 111000 x 2, 111001 x 2, 111010 x 1, 111100 x 2, 111101 x 1, 111110 x 1, 111111 x 4.
Links
- Peter Luschny, Fibonacci meanders.
Programs
-
Maple
# The list A was computed with the functions given in A361574. They correspond to the columns in the table shown in the reference. A := [[1, 2, 4, 7, 12, 20, 33, 54, 88, 143, 232, 376, 609, 986, 1596, 2583, 4180, 6764, 10945, 17710, 28656, 46367, 75024, 121392, 196417, 317810, 514228, 832039, 1346268, 2178308, 3524577, 5702886, 9227464, 14930351], [1, 3, 6, 13, 30, 70, 167, 405, 992, 2450, 6090, 15214, 38165, 96069, 242530, 613811, 1556856], [1, 3, 8, 21, 68, 242, 861, 3151, 11874, 45192, 173496], [1, 3, 10, 35, 154, 858, 4723, 25625], [1, 3, 12, 61, 360, 3058], [1, 3, 14, 111, 878], [1, 3, 16, 209], [1, 3, 18, 403], [1, 3, 20], [1, 3, 22], [1, 3, 24], [1, 3], [1, 3], [1, 3], [1, 3], [1, 3], [1, 3], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1], [1]]; with(LinearAlgebra): # a(n) is the sum of row n of this table. row := k -> [seq(`if`(irem(n, k) <> 0, 0, A[k][n/k]), n = 1..34)]: M := Transpose(Matrix([seq(row(n), n = 1..34)])): seq(add(m, m = Row(M, n)), n = 1..34);
Comments