This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361579 #14 Mar 26 2023 11:35:25 %S A361579 1,0,1,0,3,1,0,51,12,1,0,3614,447,34,1,0,991930,53675,2885,85,1,0, %T A361579 1051469032,21514470,741455,16665,201,1,0,4366988803688,30405612790, %U A361579 642187105,9816380,90678,462,1,0,71895397383029040,160152273169644,2024633081100,19625842425,122330544,474138,1044,1 %N A361579 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n. %C A361579 Here, a source-like component of a digraph D is a strongly connected component of D that corresponds to a node of in-degree 0 in the condensation of D. %H A361579 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019. %H A361579 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354. %H A361579 Wikipedia, <a href="https://en.wikipedia.org/wiki/Strongly_connected_component">Strongly connected component</a> %e A361579 Triangle begins: %e A361579 1; %e A361579 0, 1; %e A361579 0, 3, 1; %e A361579 0, 51, 12, 1; %e A361579 0, 3614, 447, 34, 1; %e A361579 0, 991930, 53675, 2885, 85, 1; %e A361579 ... %t A361579 nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; %t A361579 ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[ggfz[Exp[(u - 1) s[x]]]/ggfz[Exp[- s[x]]], {z, 0, nn}], {z u}] // Grid %Y A361579 Cf. A003028 (column k=1), A053763 (row sums). %K A361579 nonn,tabl %O A361579 0,5 %A A361579 _Geoffrey Critzer_, Mar 16 2023