cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361579 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n.

This page as a plain text file.
%I A361579 #14 Mar 26 2023 11:35:25
%S A361579 1,0,1,0,3,1,0,51,12,1,0,3614,447,34,1,0,991930,53675,2885,85,1,0,
%T A361579 1051469032,21514470,741455,16665,201,1,0,4366988803688,30405612790,
%U A361579 642187105,9816380,90678,462,1,0,71895397383029040,160152273169644,2024633081100,19625842425,122330544,474138,1044,1
%N A361579 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k source-like components, n >= 0, 0 <= k <= n.
%C A361579 Here, a source-like component of a digraph D is a strongly connected component of D that corresponds to a node of in-degree 0 in the condensation of D.
%H A361579 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%H A361579 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
%H A361579 Wikipedia, <a href="https://en.wikipedia.org/wiki/Strongly_connected_component">Strongly connected component</a>
%e A361579 Triangle begins:
%e A361579   1;
%e A361579   0,      1;
%e A361579   0,      3,     1;
%e A361579   0,     51,    12,    1;
%e A361579   0,   3614,   447,   34,  1;
%e A361579   0, 991930, 53675, 2885, 85, 1;
%e A361579   ...
%t A361579 nn = 6; B[n_] := n! 2^Binomial[n, 2]; strong =Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]]; s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]];
%t A361579 ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[B[n], {n, 0, nn}] CoefficientList[Series[ggfz[Exp[(u - 1) s[x]]]/ggfz[Exp[- s[x]]], {z, 0, nn}], {z u}] // Grid
%Y A361579 Cf. A003028 (column k=1), A053763 (row sums).
%K A361579 nonn,tabl
%O A361579 0,5
%A A361579 _Geoffrey Critzer_, Mar 16 2023