cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361592 Triangular array read by rows. T(n,k) is the number of labeled digraphs on [n] with exactly k strongly connected components of size 1, n>=0, 0<=k<=n.

This page as a plain text file.
%I A361592 #10 Mar 16 2023 19:46:07
%S A361592 1,0,1,1,0,3,18,21,0,25,1699,1080,774,0,543,587940,267665,103860,
%T A361592 59830,0,29281,750744901,225144360,64169325,19791000,10110735,0,
%U A361592 3781503,3556390155318,672637205149,126726655860,29445913175,7939815030,3767987307,0,1138779265
%N A361592 Triangular array read by rows.  T(n,k) is the number of labeled digraphs on [n] with exactly k strongly connected components of size 1, n>=0, 0<=k<=n.
%H A361592 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%H A361592 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
%H A361592 Wikipedia, <a href="https://en.wikipedia.org/wiki/Strongly_connected_component">Strongly connected component</a>
%e A361592 Triangle begins:
%e A361592        1;
%e A361592        0,      1;
%e A361592        1,      0,      3;
%e A361592       18,     21,      0,    25;
%e A361592     1699,   1080,    774,     0, 543;
%e A361592   587940, 267665, 103860, 59830,   0, 29281;
%e A361592   ...
%t A361592 nn = 7; B[n_] := n! 2^Binomial[n, 2]; strong = Select[Import["https://oeis.org/A003030/b003030.txt", "Table"], Length@# == 2 &][[All, 2]];s[x_] := Total[strong Table[x^i/i!, {i, 1, 58}]]; ggfz[egfx_] := Normal[Series[egfx, {x, 0, nn}]] /.Table[x^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[Series[1/ggfz[Exp[-(s[x] - x + u x)]], {z, 0, nn}], {z,u}])[[i]], i], {i, 1, nn + 1}] // Grid
%Y A361592 Cf. A086366 (column k=0), A003024 (main diagonal), A053763 (row sums), A361590 (unlabeled version).
%K A361592 nonn,tabl
%O A361592 0,6
%A A361592 _Geoffrey Critzer_, Mar 16 2023