A361593 a(1) = 1, a(2) = 2, a(3) = 3; for n > 3, a(n) is the smallest positive number which has not appeared such that all the distinct prime factors of a(n-3) + a(n-2) + a(n-1) are factors of a(n).
1, 2, 3, 6, 11, 10, 9, 30, 7, 46, 83, 34, 163, 70, 267, 20, 357, 322, 699, 1378, 2399, 2238, 6015, 5326, 13579, 6230, 25135, 106, 31471, 14178, 45755, 15234, 75167, 68078, 8341, 151586, 228005, 193966, 573557, 248882, 1016405, 306474, 1571761, 361830, 2240065, 1043414, 3645309, 3464394
Offset: 1
Keywords
Examples
a(6) = 10 as a(3) + a(4) + a(5) = 3 + 6 + 11 = 20 = 2*2*5, and the smallest unused number containing 2 and 5 as factors is 10.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..750
- Michael De Vlieger, Scatterplot of Log_10(a(n)), n = 1..750, showing records in red.
- Michael De Vlieger, Log log scatterplot of log_10(a(n)), n = 1..600, showing primes in red, prime powers in gold, and squarefree composites in green.
Programs
-
Mathematica
nn = 120; c[] = False; q[] = 1; f[n_] := Times @@ FactorInteger[n][[All, 1]]; t = 3; Array[Set[{a[#], c[#]}, {#, True}] &, t]; Set[{i, j, k, x}, {a[t - 2], a[t - 1], a[t], f[a[t - 2] + a[t - 1] + a[t]]}]; Do[m = q[x]; While[c[x m], m++]; m *= x; While[c[x q[x]], q[x]++]; Set[{a[n], c[m], i, j, k, x}, {m, True, j, k, m, f[j + k + m]}], {n, t + 1, nn}]; Array[a, nn] (* Michael De Vlieger, Mar 20 2023 *)
Comments