This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361598 #11 Mar 17 2023 08:30:30 %S A361598 1,2,9,58,473,4626,52537,677594,9762993,155175778,2693718281, %T A361598 50657791482,1025158123849,22198908725618,511885585833273, %U A361598 12517101011344666,323402336324055137,8800318580852865474,251497162228635927433,7529081846683064675258 %N A361598 Expansion of e.g.f. exp( x/(1-x)^2 ) / (1-x). %F A361598 a(n) = n! * Sum_{k=0..n} binomial(n+k,2*k)/k! = Sum_{k=0..n} (n+k)!/(2*k)! * binomial(n,k). %F A361598 From _Vaclav Kotesovec_, Mar 17 2023: (Start) %F A361598 a(n) = (3*n - 1)*a(n-1) - (n-1)*(3*n - 5)*a(n-2) + (n-2)^2*(n-1)*a(n-3). %F A361598 a(n) ~ 2^(-1/6) * 3^(-1/2) * exp(-1/12 + 3*2^(-2/3)*n^(2/3) - n) * n^(n + 1/6) * (1 + 1/(2^(2/3)*n^(1/3)) + 83/(360*2^(1/3)*n^(2/3))). (End) %t A361598 Table[n! * Sum[Binomial[n+k,2*k]/k!, {k,0,n}], {n,0,20}] (* _Vaclav Kotesovec_, Mar 17 2023 *) %o A361598 (PARI) my(N=20, x='x+O('x^N)); Vec(serlaplace(exp(x/(1-x)^2)/(1-x))) %Y A361598 Column k=2 of A361600. %Y A361598 Cf. A082579. %K A361598 nonn %O A361598 0,2 %A A361598 _Seiichi Manyama_, Mar 17 2023