cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361602 Decimal expansion of the mean of the distribution of disorientation angles between two identical cubes (in radians).

This page as a plain text file.
%I A361602 #12 Apr 13 2025 03:19:25
%S A361602 7,1,0,9,7,4,6,0,7,6,8,6,0,5,9,1,1,9,1,6,4,3,8,9,4,4,0,4,1,5,3,7,0,1,
%T A361602 4,9,3,3,9,2,8,6,2,1,0,3,9,4,7,6,0,5,6,3,0,7,4,1,2,3,7,4,8,0,4,2,3,8,
%U A361602 0,0,7,2,4,4,1,5,8,7,6,7,8,7,9,1,0,5,1,3,3,2,0,4,4,7,2,6,8,6,0,6,7,2,7,1,2
%N A361602 Decimal expansion of the mean of the distribution of disorientation angles between two identical cubes (in radians).
%C A361602 The probability distribution function of disorientation angles was calculated for random rotations uniformly distributed with respect to Haar measure (see, e.g., Rummler, 2002).
%C A361602 See A361601 for more details.
%C A361602 The angle in degrees is 40.7358443613...
%H A361602 Amiram Eldar, <a href="/A361602/a361602.txt">Mathematica code for A361602, A361603 and A361604</a>.
%H A361602 D. C. Handscomb, <a href="https://doi.org/10.4153/CJM-1958-010-0">On the random disorientation of two cubes</a>, Canadian Journal of Mathematics, Vol. 10 (1958), pp. 85-88.
%H A361602 J. K. Mackenzie, <a href="http://www.jstor.org/stable/2333059">Second Paper on Statistics Associated with the Random Disorientation of Cubes</a>, Biometrika, Vol. 45, No. 1-2 (1958), pp. 229-240.
%H A361602 J. K. Mackenzie and M. J. Thomson, <a href="http://www.jstor.org/stable/2333253">Some Statistics Associated with the Random Disorientation of Cubes</a>, Biometrika, Vol. 44, No. 1-2 (1957), pp. 205-210.
%H A361602 Hansklaus Rummler, <a href="https://doi.org/10.1007/BF03025318">On the distribution of rotation angles how great is the mean rotation angle of a random rotation?</a>, The Mathematical Intelligencer, Vol. 24, No. 4 (2002), pp. 6-11; <a href="https://core.ac.uk/download/pdf/159153606.pdf">alternative link</a>.
%H A361602 Wikipedia, <a href="https://en.wikipedia.org/wiki/Misorientation">Misorientation</a>.
%F A361602 Equals Integral_{t=0..tmax} t * P(t) dt, where tmax = A361601 and P(t) is
%F A361602 1) (24/Pi) * (1-cos(t)) for 0 <= t <= Pi/4.
%F A361602 2) (24/Pi) * (3*(sqrt(2)-1)*sin(t) - 2*(1-cos(t))) for Pi/4 <= t <= Pi/3.
%F A361602 3) (24/Pi) * ((3*(sqrt(2)-1) + 4/sqrt(3)) * sin(t) - 6*(1-cos(t))) for Pi/3 <= t <= 2 * arctan(sqrt(2) * (sqrt(2)-1)).
%F A361602 4) (24/Pi) * ((3*(sqrt(2)-1) + 4/sqrt(3)) * sin(t) - 6*(1-cos(t))) - (288*sin(t)/Pi^2) * (2*(sqrt(2)-1) * arccos(f(t) * cot(t/2)) + (1/sqrt(3)) * arccos(g(t) * cot(t/2))) + (288*(1-cos(t))/Pi^2) * (2*arccos(f(t) * (sqrt(2)+1)/sqrt(2)) + arccos(g(t) * (sqrt(2)+1)/sqrt(2))) for 2 * arctan(sqrt(2) * (sqrt(2)-1)) <= t <= tmax, where f(t) = (sqrt(2)-1)/sqrt(1-(sqrt(2)-1)^2 * cot(t/2)^2) and g(t) = (sqrt(2) - 1)^2/sqrt(3 - cot(t/2)^2).
%e A361602 0.71097460768605911916438944041537014933928621039476...
%t A361602 (* See the program in the links section. *)
%Y A361602 Cf. A361601, A361603, A361604.
%K A361602 nonn,cons
%O A361602 0,1
%A A361602 _Amiram Eldar_, Mar 17 2023