cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361606 Lexicographically earliest infinite sequence of distinct positive numbers such that, for n > 3, a(n) shares a factor with a(n-1) and a(n-2) but not with a(n-1) + a(n-2).

Original entry on oeis.org

1, 6, 10, 15, 12, 20, 45, 18, 40, 75, 24, 50, 105, 14, 30, 21, 28, 36, 63, 56, 48, 147, 98, 54, 189, 70, 60, 231, 22, 42, 33, 44, 72, 99, 88, 78, 143, 66, 26, 39, 84, 52, 91, 112, 104, 455, 80, 126, 35, 90, 154, 55, 100, 132, 135, 110, 96, 165, 130, 102, 85, 120, 34, 51, 108, 68, 153, 114
Offset: 1

Views

Author

Scott R. Shannon, Mar 17 2023

Keywords

Comments

All terms must contain two or more distinct prime factors. If a(n) was a prime power then a(n+1) would contain the same prime factor, which in turn would imply that a(n) + a(n+1) is a multiple of the prime. But that would make finding a(n+2) impossible as any factor of a(n) would also be a factor of the sum.
To ensure the sequence is infinite a(n) must also contain a prime factor not in a(n-1). If this were not the case the sum a(n-1) + a(n) would be a multiple of the distinct prime factors of a(n), implying a(n+1) would not exist as any factor of a(n) would be a factor of the sum.
The last even term is a(114) = 210. As a(115) = 119 and a(116) = 255, the first occurrence of consecutive odd values, the resulting sum is even, so a(117) must be odd. This forces all subsequent terms to also be odd.
There is a concentration of terms at a(n) ~ 3.4*n. See the linked image. The only fixed point in the first 50000 terms is 14, although it is possible more exist.

Examples

			a(8) = 18 = 2*3*3 as a(6) = 20 = 2*2*5 and a(7) = 45 = 3*3*5 and a(6) + a(7) = 20 + 45 = 65 = 5*13. As the sum contains 5 as a factor a(8) cannot, but it must contain both 2 and 3 while containing a factor not in 45 = 3*3*5. The smallest unused number satisfying these conditions is 18.
		

Crossrefs

Programs