This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361610 #17 Aug 29 2024 17:17:47 %S A361610 1,70,1175,13500,128125,1081250,8421875,61875000,434765625,2949218750, %T A361610 19443359375,125195312500,790283203125,4904785156250,29998779296875, %U A361610 181152343750000,1081695556640625,6394958496093750,37471771240234375,217819213867187500,1257038116455078125 %N A361610 a(n) = 5^n*(n+1)*(4*n^2+14*n+3)/3. %C A361610 The sequences A(n,k) = Sum_{j=0..n} Sum_{i=0..j} (-1)^(j-i) * binomial(n,j) * binomial(j,i) * binomial(j+k+(k+1)*i,j+k) are C-sequences for fixed integer k, here A(n,k=3) = a(n). %H A361610 Winston de Greef, <a href="/A361610/b361610.txt">Table of n, a(n) for n = 0..1408</a> %H A361610 Project Euler, <a href="https://projecteuler.net/problem=831">Problem 831. Triple Product</a> %H A361610 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (20,-150,500,-625). %F A361610 G.f.: (1 + 50*x - 75*x^2) / (5*x - 1)^4. %F A361610 a(n) = 20*a(n-1) -150*a(n-2) +500*a(n-3) -625*a(n-4). %F A361610 D-finite with recurrence n*(4*n^2+6*n-7)*a(n) -5*(n+1)*(4*n^2+14*n+3)*a(n-1)=0. %t A361610 LinearRecurrence[{20,-150,500,-625},{1,70,1175,13500},30] (* _Harvey P. Dale_, Aug 29 2024 *) %o A361610 (Python) %o A361610 def A361610(n): return 5**n*(n*(n*(4*n + 18) + 17) + 3)//3 # _Chai Wah Wu_, Mar 17 2023 %Y A361610 Cf. A027471 (k=1), A361609 (k=2), A361608 (k=5). %K A361610 nonn,easy %O A361610 0,2 %A A361610 _R. J. Mathar_, Mar 17 2023