cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361620 Decimal expansion of the median of the distribution of the least of the nine acute angles between pairs of edges of two randomly disoriented cubes (in radians).

This page as a plain text file.
%I A361620 #6 Mar 19 2023 08:29:28
%S A361620 4,0,4,6,2,6,8,0,0,8,3,8,5,0,1,3,8,4,7,5,1,4,4,5,0,0,3,5,7,4,1,4,1,8,
%T A361620 3,6,4,7,2,6,7,2,3,3,6,3,2,8,7,8,7,1,8,8,0,0,2,1,0,5,9,0,6,4,9,0,1,2,
%U A361620 9,7,2,4,8,6,7,3,5,2,3,2,0,8,3,1,7,2,2,6,8,7,8,9,1,7,1,8,2,7,8,7,9,1,0,9,7
%N A361620 Decimal expansion of the median of the distribution of the least of the nine acute angles between pairs of edges of two randomly disoriented cubes (in radians).
%C A361620 The corresponding value in degrees is 23.1834079659...
%H A361620 J. K. Mackenzie, <a href="http://www.jstor.org/stable/2333059">Second Paper on Statistics Associated with the Random Disorientation of Cubes</a>, Biometrika, Vol. 45, No. 1-2 (1958), pp. 229-240.
%H A361620 J. K. Mackenzie and M. J. Thomson, <a href="http://www.jstor.org/stable/2333253">Some Statistics Associated with the Random Disorientation of Cubes</a>, Biometrika, Vol. 44, No. 1-2 (1957), pp. 205-210.
%H A361620 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Median.html">Median</a>.
%H A361620 Wikipedia, <a href="https://en.wikipedia.org/wiki/Misorientation">Misorientation</a>.
%F A361620 Equals c such that Integral_{t=0..c} P(t) dt = 1/2, where P(t) is given in the Formula section of A361618.
%e A361620 0.40462680083850138475144500357414183647267233632878...
%t A361620 wp = 110; p[a_?NumericQ] := If[a <= 0 || a >= Pi/4, 0, (288/Pi^2) * Sin[a]*(Pi^2/32 - NIntegrate[ArcSin[Tan[a/2]*Cos[x]], {x, 0, Pi/4}, WorkingPrecision -> wp])]; f[y_?NumericQ] := NIntegrate[p[a], {a, 0, y}, WorkingPrecision -> wp]; RealDigits[y /. FindRoot[f[y] == 1/2, {y, 0.5}, WorkingPrecision -> wp], 10, 100][[1]]
%Y A361620 Cf. A228496, A361601, A361618, A361619, A361621.
%K A361620 nonn,cons
%O A361620 0,1
%A A361620 _Amiram Eldar_, Mar 18 2023