cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361621 Decimal expansion of the mode of the distribution of the least of the nine acute angles between pairs of edges of two randomly disoriented cubes (in radians).

This page as a plain text file.
%I A361621 #7 Mar 18 2023 06:54:53
%S A361621 4,0,6,8,1,1,7,8,0,1,7,4,2,0,8,7,7,1,0,1,3,8,4,2,6,8,8,1,1,8,0,8,0,8,
%T A361621 0,3,4,4,4,4,8,6,0,9,2,9,1,3,4,6,2,7,1,7,8,7,2,0,5,0,7,9,6,3,2,3,1,9,
%U A361621 3,8,6,4,8,8,2,0,0,7,9,5,3,9,6,7,2,4,1,0,6,1,5,7,8,6,4,6,0,3,7,0,4,7,0,8,9
%N A361621 Decimal expansion of the mode of the distribution of the least of the nine acute angles between pairs of edges of two randomly disoriented cubes (in radians).
%C A361621 The value of t where P(t) takes its maximum value, where P(t) is given in A361618.
%C A361621 The corresponding value in degrees is 23.3085980601...
%H A361621 J. K. Mackenzie, <a href="http://www.jstor.org/stable/2333059">Second Paper on Statistics Associated with the Random Disorientation of Cubes</a>, Biometrika, Vol. 45, No. 1-2 (1958), pp. 229-240.
%H A361621 J. K. Mackenzie and M. J. Thomson, <a href="http://www.jstor.org/stable/2333253">Some Statistics Associated with the Random Disorientation of Cubes</a>, Biometrika, Vol. 44, No. 1-2 (1957), pp. 205-210.
%H A361621 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Mode.html">Mode</a>.
%H A361621 Wikipedia, <a href="https://en.wikipedia.org/wiki/Misorientation">Misorientation</a>.
%e A361621 0.40681178017420877101384268811808080344448609291346...
%t A361621 wp = 200; f[a_] := If[a <= 0 || a >= Pi/4, 0, Sin[a] * (Pi^2/32 - NIntegrate[ArcSin[Tan[a/2]*Cos[x]], {x, 0, Pi/4}, WorkingPrecision -> wp])]; RealDigits[t /. (NMaximize[f[t], {t}, WorkingPrecision -> wp][[2]]), 10, 100][[1]]
%Y A361621 Cf. A228496, A361601, A361618, A361619, A361620.
%K A361621 nonn,cons
%O A361621 0,1
%A A361621 _Amiram Eldar_, Mar 18 2023