This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361640 #17 Mar 21 2023 09:23:27 %S A361640 0,1,2,4,3,8,12,5,6,16,7,24,32,9,10,20,11,64,28,13,14,48,15,128,80,17, %T A361640 18,36,19,40,44,21,22,56,23,192,72,25,26,52,27,256,60,29,30,96,31,384, %U A361640 160,33,34,68,35,88,76,37,38,104,39,112,120,41,42,84,43 %N A361640 a(0) = 0, a(1) = 1; thereafter let b be the least power of 2 that does not appear in the binary expansions of a(n-2) and a(n-1), then a(n) is the smallest multiple of b that is not yet in the sequence. %C A361640 This sequence is a variant of A359804; here we consider binary expansions, there prime factorizations. %C A361640 All powers of 2 appear in the sequence, in ascending order. %C A361640 This sequence is a permutation of the nonnegative integers (with inverse A361641): an odd term is always followed by two even terms, and after two even terms we can choose the least value not yet in the sequence. %H A361640 Rémy Sigrist, <a href="/A361640/b361640.txt">Table of n, a(n) for n = 0..8192</a> %H A361640 Rémy Sigrist, <a href="/A361640/a361640.gp.txt">PARI program</a> %H A361640 Michael De Vlieger, <a href="/A361640/a361640.png">Log log scatterplot of a(n)</a>, n = 1..2^20. %H A361640 Michael De Vlieger, <a href="/A361640/a361640_1.png">Log log scatterplot of a(n)</a>, n = 1..2^14, showing primes in red, composite prime powers in gold, squarefree composites in green, and numbers neither squarefree nor prime powers in blue. %H A361640 <a href="/index/Per#IntegerPermutation">Index entries for sequences that are permutations of the natural numbers</a> %e A361640 The first terms, in decimal and in binary, alongside the corresponding b's, are: %e A361640 n a(n) bin(a(n)) b %e A361640 -- ---- --------- --- %e A361640 0 0 0 N/A %e A361640 1 1 1 N/A %e A361640 2 2 10 2 %e A361640 3 4 100 4 %e A361640 4 3 11 1 %e A361640 5 8 1000 8 %e A361640 6 12 1100 4 %e A361640 7 5 101 1 %e A361640 8 6 110 2 %e A361640 9 16 10000 8 %e A361640 10 7 111 1 %e A361640 11 24 11000 8 %e A361640 12 32 100000 32 %t A361640 nn = 120; c[_] = False; q[_] = 1; %t A361640 f[n_] := f[n] = -1 + Position[Reverse@ IntegerDigits[n, 2], 1][[All, 1]]; %t A361640 a[1] = 0; a[2] = 1; c[0] = c[1] = True; i = f[0]; j = f[1]; %t A361640 Do[(k = q[#]; While[c[k #], k++]; q[#] = k; k *= #) &[ %t A361640 2^First@ Complement[Range[0, Max[#] + 1], #] &[Union[i, j]]]; %t A361640 Set[{a[n], c[k], i, j}, {k, True, j, f[k]}], {n, 3, nn}]; %t A361640 Array[a, nn] (* _Michael De Vlieger_, Mar 20 2023 *) %o A361640 (PARI) See Links section. %Y A361640 Cf. A006519, A359804, A361641 (inverse). %K A361640 nonn,base %O A361640 0,3 %A A361640 _Rémy Sigrist_, Mar 19 2023