This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361654 #21 Feb 19 2025 12:11:52 %S A361654 1,2,1,5,3,1,15,9,4,1,50,29,14,5,1,176,99,49,20,6,1,638,351,175,76,27, %T A361654 7,1,2354,1275,637,286,111,35,8,1,8789,4707,2353,1078,441,155,44,9,1, %U A361654 33099,17577,8788,4081,1728,650,209,54,10,1 %N A361654 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1,...,2n-1} with median n and minimum k. %C A361654 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). %H A361654 Andrew Howroyd, <a href="/A361654/b361654.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %H A361654 Paul Barry, <a href="https://arxiv.org/abs/2409.09547">A Riordan array family for some integrable lattice models</a>, arXiv:2409.09547 [math.CO], 2024. See p. 7. %H A361654 Paul Barry, <a href="https://doi.org/10.3390/math13020242">Extensions of Riordan Arrays and Their Applications</a>, Mathematics (2025) Vol. 13, No. 2, 242. See p. 12. %F A361654 T(n,k) = 1 + Sum_{j=1..n-k} binomial(2*j+k-2, j). - _Andrew Howroyd_, Apr 09 2023 %e A361654 Triangle begins: %e A361654 1 %e A361654 2 1 %e A361654 5 3 1 %e A361654 15 9 4 1 %e A361654 50 29 14 5 1 %e A361654 176 99 49 20 6 1 %e A361654 638 351 175 76 27 7 1 %e A361654 2354 1275 637 286 111 35 8 1 %e A361654 8789 4707 2353 1078 441 155 44 9 1 %e A361654 Row n = 4 counts the following subsets: %e A361654 {1,7} {2,6} {3,5} {4} %e A361654 {1,4,5} {2,4,5} {3,4,5} %e A361654 {1,4,6} {2,4,6} {3,4,6} %e A361654 {1,4,7} {2,4,7} {3,4,7} %e A361654 {1,2,6,7} {2,3,5,6} %e A361654 {1,3,5,6} {2,3,5,7} %e A361654 {1,3,5,7} {2,3,4,5,6} %e A361654 {1,2,4,5,6} {2,3,4,5,7} %e A361654 {1,2,4,5,7} {2,3,4,6,7} %e A361654 {1,2,4,6,7} %e A361654 {1,3,4,5,6} %e A361654 {1,3,4,5,7} %e A361654 {1,3,4,6,7} %e A361654 {1,2,3,5,6,7} %e A361654 {1,2,3,4,5,6,7} %t A361654 Table[Length[Select[Subsets[Range[2n-1]],Min@@#==k&&Median[#]==n&]],{n,6},{k,n}] %o A361654 (PARI) T(n,k) = sum(j=0, n-k, binomial(2*j+k-2, j)) \\ _Andrew Howroyd_, Apr 09 2023 %Y A361654 Row sums appear to be A006134. %Y A361654 Column k = 1 appears to be A024718. %Y A361654 Column k = 2 appears to be A006134. %Y A361654 Column k = 3 appears to be A079309. %Y A361654 A000975 counts subsets with integer median, mean A327475. %Y A361654 A007318 counts subsets by length. %Y A361654 A231147 counts subsets by median, full steps A013580, by mean A327481. %Y A361654 A359893 and A359901 count partitions by median. %Y A361654 A360005(n)/2 gives the median statistic. %Y A361654 Cf. A006134, A057552, A067659, A325347, A359907, A361849. %K A361654 nonn,tabl %O A361654 1,2 %A A361654 _Gus Wiseman_, Mar 23 2023