cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361654 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1,...,2n-1} with median n and minimum k.

This page as a plain text file.
%I A361654 #21 Feb 19 2025 12:11:52
%S A361654 1,2,1,5,3,1,15,9,4,1,50,29,14,5,1,176,99,49,20,6,1,638,351,175,76,27,
%T A361654 7,1,2354,1275,637,286,111,35,8,1,8789,4707,2353,1078,441,155,44,9,1,
%U A361654 33099,17577,8788,4081,1728,650,209,54,10,1
%N A361654 Triangle read by rows where T(n,k) is the number of nonempty subsets of {1,...,2n-1} with median n and minimum k.
%C A361654 The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).
%H A361654 Andrew Howroyd, <a href="/A361654/b361654.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50)
%H A361654 Paul Barry, <a href="https://arxiv.org/abs/2409.09547">A Riordan array family for some integrable lattice models</a>, arXiv:2409.09547 [math.CO], 2024. See p. 7.
%H A361654 Paul Barry, <a href="https://doi.org/10.3390/math13020242">Extensions of Riordan Arrays and Their Applications</a>, Mathematics (2025) Vol. 13, No. 2, 242. See p. 12.
%F A361654 T(n,k) = 1 + Sum_{j=1..n-k} binomial(2*j+k-2, j). - _Andrew Howroyd_, Apr 09 2023
%e A361654 Triangle begins:
%e A361654      1
%e A361654      2     1
%e A361654      5     3     1
%e A361654     15     9     4     1
%e A361654     50    29    14     5     1
%e A361654    176    99    49    20     6     1
%e A361654    638   351   175    76    27     7     1
%e A361654   2354  1275   637   286   111    35     8     1
%e A361654   8789  4707  2353  1078   441   155    44     9     1
%e A361654 Row n = 4 counts the following subsets:
%e A361654   {1,7}            {2,6}        {3,5}    {4}
%e A361654   {1,4,5}          {2,4,5}      {3,4,5}
%e A361654   {1,4,6}          {2,4,6}      {3,4,6}
%e A361654   {1,4,7}          {2,4,7}      {3,4,7}
%e A361654   {1,2,6,7}        {2,3,5,6}
%e A361654   {1,3,5,6}        {2,3,5,7}
%e A361654   {1,3,5,7}        {2,3,4,5,6}
%e A361654   {1,2,4,5,6}      {2,3,4,5,7}
%e A361654   {1,2,4,5,7}      {2,3,4,6,7}
%e A361654   {1,2,4,6,7}
%e A361654   {1,3,4,5,6}
%e A361654   {1,3,4,5,7}
%e A361654   {1,3,4,6,7}
%e A361654   {1,2,3,5,6,7}
%e A361654   {1,2,3,4,5,6,7}
%t A361654 Table[Length[Select[Subsets[Range[2n-1]],Min@@#==k&&Median[#]==n&]],{n,6},{k,n}]
%o A361654 (PARI) T(n,k) = sum(j=0, n-k, binomial(2*j+k-2, j)) \\ _Andrew Howroyd_, Apr 09 2023
%Y A361654 Row sums appear to be A006134.
%Y A361654 Column k = 1 appears to be A024718.
%Y A361654 Column k = 2 appears to be A006134.
%Y A361654 Column k = 3 appears to be A079309.
%Y A361654 A000975 counts subsets with integer median, mean A327475.
%Y A361654 A007318 counts subsets by length.
%Y A361654 A231147 counts subsets by median, full steps A013580, by mean A327481.
%Y A361654 A359893 and A359901 count partitions by median.
%Y A361654 A360005(n)/2 gives the median statistic.
%Y A361654 Cf. A006134, A057552, A067659, A325347, A359907, A361849.
%K A361654 nonn,tabl
%O A361654 1,2
%A A361654 _Gus Wiseman_, Mar 23 2023