This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361655 #12 Mar 24 2023 17:58:56 %S A361655 0,1,3,4,10,6,33,8,65,68,117,12,583,14,319,1078,1416,18,3341,20,8035, %T A361655 5799,1657,24,36708,16954,3496,24553,68528,30,192180,32,178802,91561, %U A361655 14625,485598,955142,38,29223,316085,2622697,42,3528870,44,2443527,5740043 %N A361655 Number of even-length integer partitions of 2n with integer mean. %H A361655 Andrew Howroyd, <a href="/A361655/b361655.txt">Table of n, a(n) for n = 0..1000</a> %e A361655 The a(0) = 0 through a(5) = 6 partitions: %e A361655 . (11) (22) (33) (44) (55) %e A361655 (31) (42) (53) (64) %e A361655 (1111) (51) (62) (73) %e A361655 (111111) (71) (82) %e A361655 (2222) (91) %e A361655 (3221) (1111111111) %e A361655 (3311) %e A361655 (4211) %e A361655 (5111) %e A361655 (11111111) %e A361655 For example, the partition (4,2,1,1) has length 4 and mean 2, so is counted under a(4). %t A361655 Table[Length[Select[IntegerPartitions[2n], EvenQ[Length[#]]&&IntegerQ[Mean[#]]&]],{n,0,15}] %o A361655 (PARI) a(n)=if(n==0, 0, sumdiv(n, d, polcoef(1/prod(k=1, 2*d, 1 - x^k + O(x*x^(2*(n-d)))), 2*(n-d)))) \\ _Andrew Howroyd_, Mar 24 2023 %Y A361655 Even-length partitions are counted by A027187, bisection A236913. %Y A361655 Including odd-length partitions gives A067538 bisected, ranks A316413. %Y A361655 For median instead of mean we have A361653. %Y A361655 The odd-length version is counted by A361656. %Y A361655 A000041 counts integer partitions, strict A000009. %Y A361655 A051293 counts subsets with integer mean, median A000975. %Y A361655 A058398 counts partitions by mean, see also A008284, A327482. %Y A361655 A325347 counts partitions with integer median, complement A307683. %Y A361655 A326567/A326568 gives mean of prime indices. %Y A361655 A326622 counts factorizations with integer mean. %Y A361655 Cf. A000016, A027193, A067659, A082550, A102627, A237984, A240219, A327475, A348551, A359893. %K A361655 nonn %O A361655 0,3 %A A361655 _Gus Wiseman_, Mar 23 2023 %E A361655 Terms a(36) and beyond from _Andrew Howroyd_, Mar 24 2023