This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361656 #11 Mar 24 2023 17:46:39 %S A361656 0,1,1,2,1,2,4,2,1,9,8,2,13,2,16,51,1,2,58,2,85,144,57,2,49,194,102, %T A361656 381,437,2,629,2,1,956,298,2043,1954,2,491,2293,1116,2,4479,2,6752, %U A361656 14671,1256,2,193,8035,4570,11614,22143,2,28585,39810,16476,24691,4566 %N A361656 Number of odd-length integer partitions of n with integer mean. %C A361656 These are partitions of n whose length is an odd divisor of n. %H A361656 Andrew Howroyd, <a href="/A361656/b361656.txt">Table of n, a(n) for n = 0..1000</a> %e A361656 The a(1) = 1 through a(10) = 8 partitions (A = 10): %e A361656 1 2 3 4 5 6 7 8 9 A %e A361656 111 11111 222 1111111 333 22222 %e A361656 321 432 32221 %e A361656 411 441 33211 %e A361656 522 42211 %e A361656 531 43111 %e A361656 621 52111 %e A361656 711 61111 %e A361656 111111111 %e A361656 For example, the partition (3,3,2,1,1) has length 5 and mean 2, so is counted under a(10). %t A361656 Table[Length[Select[IntegerPartitions[n], OddQ[Length[#]]&&IntegerQ[Mean[#]]&]],{n,0,30}] %o A361656 (PARI) a(n)=if(n==0, 0, sumdiv(n, d, if(d%2, polcoef(1/prod(k=1, d, 1 - x^k + O(x^(n-d+1))), n-d)))) \\ _Andrew Howroyd_, Mar 24 2023 %Y A361656 Odd-length partitions are counted by A027193, bisection A236559. %Y A361656 Including even-length gives A067538 bisected, strict A102627, ranks A316413. %Y A361656 The even-length version is counted by A361655. %Y A361656 A000041 counts integer partitions, strict A000009. %Y A361656 A027187 counts even-length partitions, bisection A236913. %Y A361656 A051293 counts subsets with integer mean, median A000975. %Y A361656 A058398 counts partitions by mean, see also A008284, A327482. %Y A361656 A325347 counts partitions with integer median, complement A307683. %Y A361656 A326567/A326568 gives mean of prime indices. %Y A361656 A326622 counts factorizations with integer mean. %Y A361656 Cf. A000016, A067659, A082550, A237984, A240219, A327475, A348551, A361653. %K A361656 nonn %O A361656 0,4 %A A361656 _Gus Wiseman_, Mar 24 2023