This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361674 #11 Mar 21 2023 15:03:39 %S A361674 0,1,2,2,3,4,5,5,5,6,4,5,6,7,8,9,10,11,9,10,10,10,11,10,11,12,13,10, %T A361674 13,9,10,13,14,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,17,18,21, %U A361674 22,18,21,18,19,20,21,20,21,21,21,22,20,21,22,23,20,21,22,23,24,25,26,27 %N A361674 Irregular triangle T(n, k), n >= 0, k = 1..2^A092339(n), read by rows; the n-th row lists the numbers k such that n appears in the k-th row of A361644. %C A361674 In other words, the n-th row contains the numbers k with the same binary length as n and for any i >= 0, if the i-th bit and the (i+1)-th bit in n are different then they are also different in k (i = 0 corresponding to the least significant bit). %H A361674 Rémy Sigrist, <a href="/A361674/b361674.txt">Table of n, a(n) for n = 0..9841</a> (rows for n = 0..511 flattened) %F A361674 T(n, 1) = A361645(n). %F A361674 T(n, 2^A092339(n)) = A361676(n). %e A361674 Triangle T(n, k) begins (in decimal and in binary): %e A361674 n n-th row bin(n) n-th row in binary %e A361674 -- -------------- ------ ---------------------- %e A361674 0 0 0 0 %e A361674 1 1 1 1 %e A361674 2 2 10 10 %e A361674 3 2, 3 11 10, 11 %e A361674 4 4, 5 100 100, 101 %e A361674 5 5 101 101 %e A361674 6 5, 6 110 101, 110 %e A361674 7 4, 5, 6, 7 111 100, 101, 110, 111 %e A361674 8 8, 9, 10, 11 1000 1000, 1001, 1010, 1011 %e A361674 9 9, 10 1001 1001, 1010 %e A361674 10 10 1010 1010 %e A361674 11 10, 11 1011 1010, 1011 %e A361674 12 10, 11, 12, 13 1100 1010, 1011, 1100, 1101 %e A361674 13 10, 13 1101 1010, 1101 %e A361674 14 9, 10, 13, 14 1110 1001, 1010, 1101, 1110 %o A361674 (PARI) row(n) = { my (r = [n], m); for (e = 1, exponent(n), if (bittest(n, e-1)==bittest(n, e), m = 2^e-1; r = concat(r, [bitxor(v, m) | v <- r]););); vecsort(r); } %Y A361674 Cf. A361644, A361645, A361676. %K A361674 nonn,base,tabf %O A361674 0,3 %A A361674 _Rémy Sigrist_, Mar 20 2023