A361681 Triangle read by rows. T(n, k) is the number of Fibonacci meanders with a central angle of 360/m degrees that make m*k left turns and whose length is m*n, where m = 3.
1, 2, 1, 5, 2, 1, 10, 8, 2, 1, 17, 40, 8, 2, 1, 26, 161, 44, 8, 2, 1, 37, 506, 263, 44, 8, 2, 1, 50, 1312, 1466, 268, 44, 8, 2, 1, 65, 2948, 6812, 1726, 268, 44, 8, 2, 1, 82, 5945, 26048, 11062, 1732, 268, 44, 8, 2, 1, 101, 11026, 84149, 64548, 11617, 1732, 268, 44, 8, 2, 1
Offset: 1
Examples
Triangle T(n, k) starts: [ 1] 1; [ 2] 2, 1; [ 3] 5, 2, 1; [ 4] 10, 8, 2, 1; [ 5] 17, 40, 8, 2, 1; [ 6] 26, 161, 44, 8, 2, 1; [ 7] 37, 506, 263, 44, 8, 2, 1; [ 8] 50, 1312, 1466, 268, 44, 8, 2, 1; [ 9] 65, 2948, 6812, 1726, 268, 44, 8, 2, 1; [10] 82, 5945, 26048, 11062, 1732, 268, 44, 8, 2, 1; [11] 101, 11026, 84149, 64548, 11617, 1732, 268, 44, 8, 2, 1. . T(4, 2) = 8 counts the Fibonacci meanders with central angle 120 degrees and length 12 that make 6 left turns. Written as binary strings (L = 1, R = 0): 110100100101, 111001001001, 111100010001, 111110000001, 111010010010, 111100100100, 111110001000, 111111000000.
Links
- Jean-Luc Baril, Sergey Kirgizov, Rémi Maréchal, and Vincent Vajnovszki, Enumeration of Dyck paths with air pockets, arXiv:2202.06893 [cs.DM], 2022-2023.
- Peter Luschny, Fibonacci meanders.
Programs
-
SageMath
# using functions 'isMeander' and 'isFibonacci' from A361574. def FibonacciMeandersByLeftTurns(m: int, n: int) -> list[int]: size = m * n; A = [0] * n; k = -1 for a in range(0, size + 1, m): S = [i < a for i in range(size)] for c in Permutations(S): if c[0] == 0: break if not isFibonacci(c): continue if not isMeander(m, c): continue A[k] += 1 k += 1 return A for n in range(1, 12): print(FibonacciMeandersByLeftTurns(3, n))
Comments