cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361686 a(n) is the least totient divisor of A329872(n), where A329872 are nontotients (A005277) that are the product of two totients (A002202).

This page as a plain text file.
%I A361686 #11 Mar 29 2023 12:12:04
%S A361686 22,22,10,46,58,46,78,82,58,46,102,22,106,82,46,138,106,82,166,172,
%T A361686 178,190,106,226,82,166,238,172,178,22,106,262,190,282,22,106,310,316,
%U A361686 226,82,166,238,172,346,46,178,22,358,22,10,366,106,262,382,82,388,58,22,22,46,418
%N A361686 a(n) is the least totient divisor of A329872(n), where A329872 are nontotients (A005277) that are the product of two totients (A002202).
%C A361686 Let k be the least instance a(k) = m, then A329872(k) = m*A361058(m). For instance a(3)=10, and A329872(3) = 1100 = 10*110 = 10*A361058(10).
%C A361686 Can we get a(k)=30 or a(k)=52 (see A361058)?
%H A361686 Michel Marcus, <a href="/A361686/b361686.txt">Table of n, a(n) for n = 1..7280</a>
%e A361686 a(3)=10 because A329872(3)=1100 which can be expressed as 1*1100, 2*550, 4*275, 5*220, 10*110, ... where 10*110 is the first case where both factors are nontotients.
%o A361686 (PARI) is(n) = if(!istotient(n), my(v=divisors(n)); for(i=1, (1+#v)\2, if(istotient(v[i])&&istotient(n/v[i]), return(1))); 0); \\ A329872
%o A361686 lista(nn) = for (n=1, nn, if (is(n), my(d=divisors(n)); for (i=1, (1+#d)\2, if (istotient(d[i]) && istotient(n/d[i]), print1(d[i], ", "); break););););
%Y A361686 Cf. A002202, A005277, A329872, A361058.
%K A361686 nonn
%O A361686 1,1
%A A361686 _Michel Marcus_, Mar 29 2023