This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361691 #119 Jun 25 2023 10:39:44 %S A361691 1,1,1,1,1,1,2,1,1,1,1,1,2,1,2,1,1,1,2,1,1,1,2,1,2,1,1,2,1,1,3,1,1,1, %T A361691 1,1,2,1,2,1,2,1,3,1,1,1,2,1,2,1,1,1,1,2,3,1,1,2,1,1,2,1,3,1,1,1,3,1, %U A361691 1,1,2,1,3,1,1,1,1,1,3,2,1,1,2,1,3,1,2,2,1,1,2,1,2,1,2,1,2,1,1,1 %N A361691 Number of divisors of 7*n-1 of form 7*k+1. %C A361691 Also number of divisors of 7*n-1 of form 7*k+6. %F A361691 a(n) = A279061(7*n-1) = A363808(7*n-1). %F A361691 G.f.: Sum_{k>0} x^(6*k-5)/(1 - x^(7*k-6)). %F A361691 G.f.: Sum_{k>0} x^k/(1 - x^(7*k-1)). %t A361691 a[n_] := DivisorSum[7*n - 1, 1 &, Mod[#, 7] == 1 &]; Array[a, 100] (* _Amiram Eldar_, Jun 25 2023 *) %o A361691 (PARI) a(n) = sumdiv(7*n-1, d, d%7==1); %Y A361691 Cf. A363854, A363855, A363856, A363857, A363858. %Y A361691 Cf. A279061, A363808. %K A361691 nonn %O A361691 1,7 %A A361691 _Seiichi Manyama_, Jun 24 2023