cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361702 Lexicographically earliest sequence of positive numbers on a square spiral such that no four equal numbers lie on the circumference of a circle.

Original entry on oeis.org

1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 1, 3, 3, 1, 3, 3, 3, 2, 2, 3, 2, 4, 4, 4, 2, 1, 2, 3, 4, 3, 4, 4, 5, 5, 5, 5, 1, 1, 5, 4, 3, 4, 6, 5, 6, 6, 4, 3, 2, 1, 5, 4, 1, 6, 3, 4, 2, 5, 6, 5, 6, 7, 6, 7, 3, 1, 5, 7, 7, 6, 4, 6, 5, 7, 6, 4, 7, 8, 7, 6, 7, 4, 7, 5, 8, 8, 8, 6, 3, 6, 4, 8, 5, 8, 9, 9, 7, 8, 3
Offset: 1

Views

Author

Scott R. Shannon, Mar 21 2023

Keywords

Comments

The first term a(1) = 1 lies at the (0,0) origin while all other terms lie on integer coordinates.

Examples

			a(4) = 2 as a(1) = a(2) = a(3) = 1 all lie on the circumference of a circle with radius 1/sqrt(2) centered at (1/2,1/2), assuming a counter-clockwise spiral, so a(4) cannot be 1.
a(12) = 3 as a(2) = a(3) = a(11) = 1 all lie on the circumference of a circle with radius 1/sqrt(2) centered at (3/2,1/2), so a(12) cannot be 1, while a(4) = a(8) = a(10) = 2 all lie on the circumference of a circle with radius sqrt(2) centered at (1,0), so a(12) cannot be 2.
a(22) = 4 as a(1) = a(2) = a(7) = 1 all lie on the circumference of a circle with radius sqrt(10)/2 centered at (1/2,-3/2), so a(22) cannot be 1, a(6) = a(19) = a(21) = 2 all lie on the circumference of a circle with radius sqrt(5)/2 centered at (-3/2,-1), so a(22) cannot be 2, while a(12) = a(16) = a(20) = 3 all lie on the circumference of a circle with radius sqrt(5) centered at (0,0), so a(22) cannot be 3.
		

Crossrefs