cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.

This page as a plain text file.
%I A361718 #28 Jan 04 2024 18:11:12
%S A361718 1,0,1,0,2,1,0,15,9,1,0,316,198,28,1,0,16885,10710,1610,75,1,0,
%T A361718 2174586,1384335,211820,10575,186,1,0,654313415,416990763,64144675,
%U A361718 3268125,61845,441,1,0,450179768312,286992935964,44218682312,2266772550,43832264,336924,1016,1
%N A361718 Triangular array read by rows. T(n,k) is the number of labeled directed acyclic graphs on [n] with exactly k nodes of indegree 0.
%C A361718 Also the number of sets of n nonempty subsets of {1..n}, k of which are singletons, such that there is only one way to choose a different element from each. For example, row n = 3 counts the following set-systems:
%C A361718   {{1},{1,2},{1,3}}    {{1},{2},{1,3}}    {{1},{2},{3}}
%C A361718   {{1},{1,2},{2,3}}    {{1},{2},{2,3}}
%C A361718   {{1},{1,3},{2,3}}    {{1},{3},{1,2}}
%C A361718   {{2},{1,2},{1,3}}    {{1},{3},{2,3}}
%C A361718   {{2},{1,2},{2,3}}    {{2},{3},{1,2}}
%C A361718   {{2},{1,3},{2,3}}    {{2},{3},{1,3}}
%C A361718   {{3},{1,2},{1,3}}    {{1},{2},{1,2,3}}
%C A361718   {{3},{1,2},{2,3}}    {{1},{3},{1,2,3}}
%C A361718   {{3},{1,3},{2,3}}    {{2},{3},{1,2,3}}
%C A361718   {{1},{1,2},{1,2,3}}
%C A361718   {{1},{1,3},{1,2,3}}
%C A361718   {{2},{1,2},{1,2,3}}
%C A361718   {{2},{2,3},{1,2,3}}
%C A361718   {{3},{1,3},{1,2,3}}
%C A361718   {{3},{2,3},{1,2,3}}
%H A361718 E. de Panafieu and S. Dovgal, <a href="https://arxiv.org/abs/1903.09454">Symbolic method and directed graph enumeration</a>, arXiv:1903.09454 [math.CO], 2019.
%H A361718 R. W. Robinson, <a href="http://cobweb.cs.uga.edu/~rwr/publications/components.pdf">Counting digraphs with restrictions on the strong components</a>, Combinatorics and Graph Theory '95 (T.-H. Ku, ed.), World Scientific, Singapore (1995), 343-354.
%F A361718 T(n,k) = A368602(n,k) * binomial(n,k). - _Gus Wiseman_, Jan 03 2024
%e A361718 Triangle begins:
%e A361718   1;
%e A361718   0,     1;
%e A361718   0,     2,     1;
%e A361718   0,    15,     9,    1;
%e A361718   0,   316,   198,   28,  1;
%e A361718   0, 16885, 10710, 1610, 75, 1;
%e A361718   ...
%t A361718 nn = 8; B[n_] := n! 2^Binomial[n, 2] ;ggf[egf_] := Normal[Series[egf, {z, 0, nn}]] /. Table[z^i -> z^i/2^Binomial[i, 2], {i, 0, nn}];Table[Take[(Table[B[n], {n, 0, nn}] CoefficientList[ Series[ggf[Exp[(u - 1) z]]/ggf[Exp[-z]], {z, 0, nn}], {z, u}])[[i]], i], {i, 1, nn + 1}] // Grid
%t A361718 nv=4;Table[Length[Select[Subsets[Subsets[Range[n]],{n}], Count[#,{_}]==k&&Length[Select[Tuples[#], UnsameQ@@#&]]==1&]],{n,0,nv},{k,0,n}]
%Y A361718 Cf. A058876 (mirror), A361579, A224069.
%Y A361718 Row-sums are A003024, unlabeled A003087.
%Y A361718 Column k = 1 is A003025(n) = |n*A134531(n)|.
%Y A361718 Column k = n-1 is A058877.
%Y A361718 For fixed sinks we get A368602.
%Y A361718 A058891 counts set-systems, unlabeled A000612.
%Y A361718 A323818 counts covering connected set-systems, unlabeled A323819.
%Y A361718 Cf. A000169, A059201, A082402, A088957, A133686, A334282, A350415, A367904, A367908, A368600, A368601.
%K A361718 nonn,tabl
%O A361718 0,5
%A A361718 _Geoffrey Critzer_, Apr 02 2023