This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361731 #8 Mar 23 2023 07:57:42 %S A361731 1,1,1,1,4,1,1,10,7,1,1,20,25,10,1,1,35,63,46,13,1,1,56,129,136,73,16, %T A361731 1,1,84,231,307,245,106,19,1,1,120,377,586,593,396,145,22,1,1,165,575, %U A361731 1000,1181,1011,595,190,25,1,1,220,833,1576,2073,2076,1585,848,241,28,1 %N A361731 Array read by descending antidiagonals. A(n, k) = hypergeom([-k, -3], [1], n). %F A361731 A(n, k) = [x^k] (1 + (n - 1) * x)^3 / (1 - x)^4. %F A361731 A(n, k) = 1 + (((k*n - 3*n + 9)*n*k + (2*n - 9)*n + 18)*n*k)/6. %F A361731 T(n, k) = 1 + (((k*(n - k) - 3*k + 9)*k*(n - k) + (2*k - 9)*k + 18)*k*(n - k))/6. %e A361731 Array A(n, k) starts: %e A361731 [0] 1, 1, 1, 1, 1, 1, 1, 1, ... A000012 %e A361731 [1] 1, 4, 10, 20, 35, 56, 84, 120, ... A000292 %e A361731 [2] 1, 7, 25, 63, 129, 231, 377, 575, ... A001845 %e A361731 [3] 1, 10, 46, 136, 307, 586, 1000, 1576, ... A081583 %e A361731 [4] 1, 13, 73, 245, 593, 1181, 2073, 3333, ... A081586 %e A361731 [5] 1, 16, 106, 396, 1011, 2076, 3716, 6056, ... A081588 %e A361731 [6] 1, 19, 145, 595, 1585, 3331, 6049, 9955, ... A081590 %e A361731 [7] 1, 22, 190, 848, 2339, 5006, 9192, 15240, ... %e A361731 . %e A361731 Table T(n, k) starts: %e A361731 [0] 1; %e A361731 [1] 1, 1; %e A361731 [2] 1, 4, 1; %e A361731 [3] 1, 10, 7, 1; %e A361731 [4] 1, 20, 25, 10, 1; %e A361731 [5] 1, 35, 63, 46, 13, 1; %e A361731 [6] 1, 56, 129, 136, 73, 16, 1; %e A361731 [7] 1, 84, 231, 307, 245, 106, 19, 1; %e A361731 [8] 1, 120, 377, 586, 593, 396, 145, 22, 1; %e A361731 [9] 1, 165, 575, 1000, 1181, 1011, 595, 190, 25, 1; %p A361731 A := (n, k) -> 1 + (((k*n - 3*n + 9)*n*k + (2*n - 9)*n + 18)*n*k)/6; %p A361731 seq(print(seq(A(n, k), k = 0..7)), n = 0..7); %p A361731 # Alternative: %p A361731 ogf := n -> (1 + (n - 1) * x)^3 / (1 - x)^4: %p A361731 ser := n -> series(ogf(n), x, 12): %p A361731 row := n -> seq(coeff(ser(n), x, k), k = 0..9): %p A361731 seq(print(row(n)), n = 0..9); %Y A361731 Rows: A000012, A000292, A001845, A081583, A081586, A081588, A081590. %Y A361731 Columns: A000012, A016777, A100536. %Y A361731 Hypergeometric family: A000012 (m=0), A077028 (m=1), A361682 (m=2), this array (m=3). %K A361731 nonn,tabl %O A361731 0,5 %A A361731 _Peter Luschny_, Mar 22 2023