This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A361732 #17 Mar 26 2025 08:31:55 %S A361732 1,1,2,6,20,60,174,490,1352,3672,9850,26158,68892,180180,468454, %T A361732 1211730,3120400,8004144,20460402,52139990,132502180,335882988, %U A361732 849507230,2144114234,5401408344,13583493000,34105191146,85504030974,214070361260,535269125508,1336814464470 %N A361732 a(n) = [x^n] (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2. %F A361732 a(n) = (n*(n - 1)*a(n-2) + 2*n*(n - 2)*a(n-1)) / ((n - 2)*(n - 1)) for n >= 4. %F A361732 a(n) = Sum_{k=0..n-1} F(n-1, 2) for n >= 2, where F(n, x) is the n-th Fibonacci polynomial. %F A361732 a(n) = n*A000129(n-1), a(0)=1, a(1)=1. - _Vladimir Kruchinin_, Apr 19 2024 %F A361732 a(n) = 2^(n-2)*n*hypergeom([(3-n)/2, (2-n)/2], [2-n], -1) for n >= 2. - _Peter Luschny_, Apr 19 2024 %p A361732 a := proc(n) option remember; if n < 4 then return [1, 1, 2, 6][n + 1] fi; %p A361732 (n*(n - 1)*a(n - 2) + 2*n*(n - 2)*a(n - 1)) / ((n - 2)*(n - 1)) end: %p A361732 seq(a(n), n = 0..30); %p A361732 # Alternative: %p A361732 F := n -> add(combinat:-fibonacci(n - 1, 2), k = 0..n-1): %p A361732 a := n -> F(n) + ifelse(n < 2, 1, 0): seq(a(n), n=0..30); %p A361732 # Using the generating function: %p A361732 ogf := (x^5 + 5*x^4 + 4*x^3 - 3*x + 1)/(x^2 + 2*x - 1)^2: %p A361732 ser := series(ogf, x, 40): seq(coeff(ser, x, n), n = 0..30); %p A361732 # Or: %p A361732 a := n -> ifelse(n < 2, 1, 2^(n-2)*n*hypergeom([(3-n)/2, (2-n)/2], [2-n], -1)); %p A361732 seq(simplify(a(n)), n = 0..30); # _Peter Luschny_, Apr 19 2024 %Y A361732 Cf. A000129, A361758. %K A361732 nonn %O A361732 0,3 %A A361732 _Peter Luschny_, Mar 23 2023